PowerS

cript Language

VERSION 4.0

Copyright © 1991-1994 by Powersoft Corporation.
All rights reserved.
First printed and distributed in the United States of America.

Information in this manual may change without notice and does not represent a commitment on
the part of Powersoft Corporation.

The software described in this manual is provided by Powersoft Corporation under a Powersoft
License agreement. The software may be used only in accordance with the terms of the agreement.

Powersoft Corporation ("Powersoft") claims copyright in this program and documentation as an
unpublished work, revisions of which were first licensed on the date indicated in the foregoing
notice. Claim of copyright does not imply waiver of Powersoft's other rights.

This program and documentation are confidential trade secrets and the property of Powersoft. Use,
examination, reproduction, copying, decompilation, transfer, and/or disclosure to others are strictly
prohibited except by express written agreement with Powersoft.

PowerBuilder, Powersoft, and SQL Smart are registered trademarks, and InfoMaker, Powersoft
Enterprise Series, PowerMaker, PowerSQL, PowerViewer, and CODE are trademarks of
Powersoft Corporation. DataWindow is a proprietary technology of Powersoft Corporation (U.S.
patent pending).

1-2-3 is a registered trademark of Lotus Development Corporation. 386 is a trademark of Intel
Corporation. ALLBASE/SQL and IMAGE/SQL are trademarks of Hewlett-Packard Company.
AT&T Global Information Solutions and TOP END are registered trademarks of AT&T.
CICS/MVS, DB2, DB2/2, DRDA, IMS, PC-DOS, and PL/1 are trademarks of International
Business Machines Corporation. CompuServe is a registered trademark of CompuServe, Inc. DB-
Library, Net-Gateway, SQL Server, and System 10 are trademarks of Sybase Corporation.
dBASE is a registered trademark of Borland International, Inc. Graphics Server is a trademark of
Bits Per Second Ltd. DEC and Rdb are trademarks of Digital Equipment Corporation. FoxPro,
Microsoft, Microsoft Access, MS-DOS, and Multiplan are registered trademarks, and Windows
and Windows NT are trademarks of Microsoft Corporation. INFORMIX is a registered trademark
of Informix Software, Inc. INTERSOLYV, PVCS, and Q+E are registered trademarks of
INTERSOLYV, Inc. ORACLE is a registered trademark of Oracle Corporation. PaintBrush is a
trademark of Zsoft Corporation. PC/SQL-link is a registered trademark, and Database Gateway is
a trademark of Micro Decisionware, Inc. Paradox is a registered trademark of Borland
International, Inc. SQLBase is a registered trademark of Gupta Corporation. Watcom is a
registered trademark of Watcom International Corporation. XDB is a registered trademark of
XDB Systems.

December 1994

Contents

ADbOUt This ManUal ...t r s ess e e as s s s s s s s e s mmmn e vii
1 Language BasSiCsccccurrrmmrirsmenrssensssnsssssssnssesssnssssssnnnas 1
COMMENIES ..ot e e e e e e e 2

Double slash method..........ccceeviiiiiiieiccceee e, 2

Slash and asterisk method.............cccocooiiieiiiieciicce 3

SUMMANY ..ottt eaee e eane e 3

Identifier NAMEeScooviieeeee e 4

Labe IS ... e 6

ASCII CharaCters..........ceeiieiciieeee et eee e 7

Common ASCII characterscccccueeecveeeciveeeciiee e 7

ASCIIVAIUESceeveieiee et 8

NULL VaAIUESvviiiee ettt e 9

What NULL MEaNScccuuuiiiieeeiieeee e 9

NULL variables........cc..eeeiiiriiiiee e 9

NULLSs in functions and expressionscccceceeeeeeennn... 10

Testing for NULLccoooiiiieiitee e 10

ReServed WOrdSccocvueiiiiiiiiee e 11

Parent, This, ParentWindow, and Super 11

Statement continuation and separationc.c.cccoeevrennenn. 15

Continuation character...........cccceeeeeeiiieeicceiec e, 15

Statement separatorcccceeevviciiee e 17

WHhIE SPACE.....cciii et 18

2 Data TYPesccocirreericriismnrsssnnnesssses s s e s seseesssesesssansesses 19
Standard data types.........cccceerieeiiieieeeeee e 20

List of the standard data types..........c.ccoecuveeerieccineeeeene 20

Using iterals.........coovoeiireiee e, 22

Using strings and chars.........cccccccceeeeeecveeec e 23

System object data types.......ccccceeeiiiieiiee e 27

Using the Class browserccoceeeueeeeeceeecieeciecceeeee. 27

About the system object hierarchyccccceeveivineeerennnn. 28

Enumerated data types........ccccuremremmiiiiiimiieieniee s 30

About enumerated data types.......cccceveeeeiiiiiiiiiii, 30
Listing the enumerated data types...........cccccceeeeni, 31

3 Declarations.........cccceuirsmemmmmmsesessmmmmmms s ss———————— 33
Types of variables ... 34
Global variablesceeeeicuvieeiaiiniieer e 34
Instance variablescoooveciciiiiieeeeeeeee e 34
Shared variablesceeveiereeeeiiieiieee e 39
Local variables.......cccceeieeeeeeeeeeeecerere 40
How PowerBuilder looks for variablesc.cccceeeeeiis 40
Declaring variables.........cccoccvviriiiiiniiiie i 41
Standard declarationsccoceeeeeiriiiiiii 41
Blob declarations...........ccevvvrmeiiiiiiniieeeeecrcrriii 41
Decimal declarations............ccooiceimmmmreeiieeee 42
INitial Values.......oeeiieeeeeeee e 43
DecClaring @rraysccoceeeeviieiiiiinn e 46
Fixed-size arrays..........cocevrrmmmiimiieii e 46
Variable-size arrays........cccccovveeeieemmii s 47
Multidimensional arrays............ccceveeeeiieieieecercrii e, 48
SNG AITAYS....cc e 49
DeCiMal arrayS.......cceeeeeimrreereiiiirree s sirrer e 49
AITAY BITOIS ..ciiiiiiiiiiiiiitirr e 50

4 Operators and EXpressions..........ccccccurrisemnensssnmnnnssssnnnnnens 53
(@] 07T 221 (o) £ PP PPP 54
Arithmetic operators........cccccccciiiiiiiiiiii 54
Relational operatorscccveeiviiriiiiiinni s 56
Logical OPerators.........ccveeeeiiiiieiiiec e 57
Concatenation operator............oooceeeimiimrimriiiiiiiiccieeeeeeeen 58
Operator precedence in eXpressions.............occvvveieeeeeiniiieeenns 59
5 Statements......ccccecccirrmmrr s s s 61
Assignment statementsccccveeiiiiiiiiene 62
Using dot notationccccvimmiiiiiiiiis 63
[0 I SOOI 64
CHOOSE CASE ...ttt e et 65
CONTINUEoiiieetee et e e e et e et re e e e s mnne s e e 67
In @ DO...LOOP StrUCtUIEcetmiiriiiieeeeeeeeeee s 67

Ina FOR...NEXT structurecccoeimeeeieiiieeieiecii, 67
CREATE oottt e e e e e e e s s saa e 68
DESTROY ... oottt eee e ieiiree e e et e e e e e e e e e e e e e s s assnesanes 69
DO...LOOP. ... ittt 70

iv

Using @s DO UNTILccooiiiiiinieeeee e, 70

Using as DO WHILE...........ooooiiiiecieeeeceee e 71
Using @as LOOP UNTIL...c.c..ooivuieeiiniiiireeecieee e e 71
Using as LOOP WHILEccccceeveiiiee e 72
When to use the different forms........cccccoevievcivieniiiiiennn, 72
) U 74
Using in DO...LOOPccooiiiiiieieeer et 74
Using in FOR...INEXT....cccoooiiiiiiieeeee e 74
FOR..INEXT ..ottt 75
GOTO .ttt e e b e s aaae e e 77
HALT and RETURN ...t 78
USING HALT ...t 78
USiNng RETURNcoooieei e, 78
IFLLTHEN Lo e 80
Using the single-line formatcccoooceeeiieecciec e, 80
Using the multiline format...........cccccoovviiiiiicieceee e, 81

LT T T (o L 83
Calling fUNCONScoeiiiieecee e 84
Case iNSenSItiVity.........ccceevuerrieccee e 84
Return valuescccoeiiiniiiie e 85
How PowerBuilder looks for functions.............ccccccceuveeennee 85
Types of built-in functionsccceeccveeeiiciiee e, 86
Writing user-defined functions............ccccecvveeeviciieiec e, 88
External functionscovviiviiciiii i 89
Syntax for declaring external functions............c....ccuoe.... 89
SQL Statements.........cccoeemriiirrrscerrrreer e 93
Using SQL in SCHPEScoouiiiiiiiieeseeieeeeree e, 94
Referencing PowerScript variables in scripts 94
Using indicator variables.............cccceeeiiiveecceicceee e, 94
Error handling in SCriptsccceeeciiiccieceececee e, 96
Painting standard SQL..........ccccccvvveniiniiecieece e 96
Supported SQL statements...........cccceeeeeveeieiieeeee e 98
CLOSE CUISON.....cuiieieeiie ettt ettt 99
CLOSE ProCeaureccceeeeueeecuieceecee et 100
COMMIT .o 101
CONNEGCGT ...t 102
DECLARE CUISOFuviieieieiee ettt 103
DECLARE Procedure.........ccccuvecieeieeeeieeee et 104
DELETE ..ot e 106
DELETE Where Current of CUrsor..........cccccvveeveeecveeeceveennn. 107

vi

EXECUTE ...ttt ettt e e e s e e e e aae s e e e e e saaaa e s eeananns 109

[1 = R 110

1N] =1 = AT 111
(@] =d =1 (N @101 =Y SUUTT U 112
ROLLBACK ...ttt e e et e e e s et e e s e e ase e e eessannn e ennes 113

(] =1 I (O IS 114
SELECTBLOB.... oottt e s e e s e e e e e s e s e sanans 115

] =1 57 1 S 116
UPDATEBLOB ...ttt ettt e e e e e eaaas e s sae s e an e enaans 117
UPDATE Where Current of CUIrsOor......ccoceeevivvvieeeenieivnceeeeens 118
Using dynamic SQL........ccooiiiirr i 119
PowerBuilder's dynamic SQL statements......................... 120

About DynamicStagingAreacccceeeeeiieee e 120

About DynamicDescriptionArea.........ccccceveveeniiiineniieeecne 121

(2100 1=\ S TR 122

00110 1= | G2 123

oY 10 1 1= L S TR 125

FOrMAat 4 ... e e a e eaas 128
CONSIAEIAtIONSeeeeeeeeeeee e e e e ena e rae e e aaan s 132
PowerBuilder Units......cccceeuvirmmiimeiemeinerirensensssrmesssnesenssenns 135
Benefits of PowerBuilder unitS.........cccevveiiniiiiiiiiiieiieen. 136
How PowerBuilder units are calculated............ccccceevvvneiinnnnnns 137
Converting between PowerBuilder units and pixels.......... 137
Examples of conversionscccoccvveeeeiinieen e, 138
EXplanation..........cooceereiiniiicn e 139
Additional faCtorsS.ceeeeeeieeie e 140
ConVversion FUNCHONSccuuiiiieieeeceeeeeeeee e eena 141
Reserved WOordsSc.cccceevrmeieurmnssesienssessensenssessenssenssessennes 143
Supported C Data Types.......cccuurummmemmnrisssnmnnsmmssssnssnsnnnas 145
Floating-Point Limits by Platform.........cccociimmmennnnnnnns 147

About This Manual

Subject This manual describes the PowerScript language, which is the language
you use in scripts and user-defined functions to build PowerBuilder
applications.

Audience This manual is for programmers who will be building and maintaining

PowerBuilder applications. It assumes that you are familiar with Microsoft
Windows 3.1 and the SQL statements supported by your database
management system (DBMS).

vii

CHAPTER 1
Language Basics

About this chapter This chapter describes general elements and conventions of PowerScript.

Contents
Topic Page
Comments 2
Identifier names 4
Labels 6
ASCII characters 7
NULL values 9
Reserved words 11
Statement continuation and separation 15
White space 18

Comments

Comments

You can use comments to document your scripts and to prevent statements
within a script from executing.

There are two ways to designate comments in PowerScript: the double
slash method and the slash and asterisk method.

Tip

In the PowerScript painter and the Function painter, you can use the
Comment Selection button or select Edit>Comment Selection from the
menu bar to comment out the line containing the cursor or a selected
group of lines.

For information about adding comments to objects and library entries, see
the User's Guide.

Double slash method

Examples

You use the double slash method to designate a single line comment. The
comment can be the entire line or part of the line. When the compiler
encounters double slashes, it ignores everything following double slashes
and on the same line. When you use this method to designate a comment,
the comment cannot extend to multiple lines.

The following examples show how to use the double slash method to
designate comments.

// This entire line is a comment.
// This entire line is another comment.

amt = gty * cost // Rest of the line is comment.
// The following statement was commented out so it

// would not execute.
// SetNull(amt)

Chapter 1 Language Basics

Slash and asterisk method

With the slash and asterisk method, a slash followed by an asterisk (/*)
begins a comment and an asterisk followed by a slash (*/) ends the
comment. The compiler ignores everything between the slash asterisk and
the asterisk slash. When you use this method to designate a comment, you
can:

Examples

Summary

*

*

*

Make all or part of a line a comment
Extend a comment to multiple lines

Nest comments

Continuing comments
Multiline comments do not require a continuation character.

/* This is a single-line comment. */

/* This comment starts here,
continues to this line,
and finally ends here. */

A =B+ C /* This comment starts here.

/* This is the start of a nested comment.
The nested comment ends here. */

The first comment ends here. */ + D + E + F

Delimiter Use to

1

/*...

Designate all or part of a line as a comment

*/ Designate all or part of a line as a comment or multiple lines
as a single comment

Nest comments

Identifier names

Identifier names

Rules

Prohibiting dashes
in variable names

You use identifiers to name variables, labels, functions, windows, controls,
menus, and anything else you refer to in scripts.

Identifiers:

¢ Must start with a letter

¢ Can have up to 40 characters, but no spaces

¢ Are case insensitive (PART, Part, and part are identical)
*

Can include any combination of letters, numbers, and these special
characters:

- Dash

Underscore

$ Dollar sign
Number sign

% Percent sign

By default, PowerBuilder allows you to use dashes in all identifiers,
including in variable names in a script. This means that when you use the
subtraction operator or the -- operator in a script, you must surround it with
spaces (otherwise, PowerBuilder thinks the expression is an identifier
name).

If you want to disallow dashes in variable names in scripts (and not have to
surround the subtraction operator and -- with spaces), you can set the
DasheslInldentifiers preferences variable to 0 in the [pb] section of PB.INI.

[pb]
DashesInIdentifiers=0

By default, DashesInldentifiers equals 1, which allows dashes.

Changing Dashesinldentifiers
Be careful: if you do set the variable to 0 and have previously used

dashes in variable names, you will get errors the next time you compile.

Chapter 1 Language Basics

Using multiword Since PowerScript does not allow spaces in identifier names, you can use
names any of the following techniques for multiword names.

¢ Initial caps (for example, FirstWindow)

¢ Dashes, except in variable names if you set DashesInldentifiers to 0
(for example, customer-name)

¢ Underscores (for example, quantity_on_hand)

Examples Here are some valid identifiers.

ABC_Code

Child-Id

FirstButton

response35
pay-beforetdeductionss$
ORDER_DATE
Actual-$-amount

Part#

Here are some invalid identifiers.

2nd-quantity // Does not start with a letter
ABC Code // Contains a space
Child'sId // Contains invalid special character

Labels

Labels

Examples

You can include labels in scripts for use with GOTO statements. A label
can be any valid identifier followed by a colon (:). You can enter it on a
line by itself or at the start of the line preceding a statement.

& For information about the GOTO statement, see Chapter 5,
"Statements."

The label shown below is on its own line and above the statement.

FindCity:
IF city=cityname[1l] THEN ...

The label shown below is on same line as the statement.

FindCity: IF city=cityname[1l] THEN ...

Chapter 1 Language Basics

ASCII characters

You can include special ASCII characters in strings. For example, you may
want to include a tab in a string to ensure proper spacing or a bullet to
indicate a list item. The tilde character introduces special characters.

Common ASCII characters

To specify this

ASCII character Enter
Newline ~n
Tab ~t
Vertical tab ~v
Carriage return ~T
Formfeed ~f
Backspace ~b
Double quote ~"
Single quote ~!
Tilde ~—

The following table illustrates how to use special characters in strings.

String Description

"dog~n" A string containing the word dog followed by a
newline character

"dog~tcat~ttiger" A string containing the word dog, a tab character,
the word cat, another tab character, and the word
tiger

ASCII characters

ASCII values

Examples

You can specify any ASCII character (including the characters in the
previous table) by typing a tilde (~) followed by the decimal, hexadecimal,
or octal ASCII value for the character.

ASCII value Enter

Decimal A tilde followed by three digits from 000 to 255

Hexadecimal A tilde followed by a lowercase h, followed by a two-digit
hexadecimal number from 01 to FF

Octal A tilde followed by a lowercase o, followed by a three-digit
octal number from 000 to 377

The following table shows how to indicate a bullet (®) in a string by using
the decimal, hexadecimal, and octal ASCII values.

Value Description

~249 The ASCII character with decimal value 249
~hF9 The ASCII character with hexadecimal value F9
~0371 The ASCII character with octal value 371

Chapter 1 Language Basics

NULL values

Although PowerBuilder supports NULL values for all variable data types,
it does not initialize variables to NULL. Instead, when a variable is not set
to a specific value when it is declared, PowerBuilder sets it to the default
initial value for the data type. For example, zero for a numeric value,
FALSE for boolean, and the empty string ("") for a string.

Typically, you work with NULL values only with respect to database
values.

What NULL means

NULL variables

NULL means undefined. Think of NULL as unknown. It is not the same as
an empty string or zero or a date of 0000-00-00. For example, NULL is
neither 0 nor not 0.

A variable can become NULL if one of the following occurs:

¢ ANULL value is read into it from the database. If your database
supports NULL and a SQL INSERT or UPDATE statement sends a
NULL to the database, it is written to the database as NULL and can
be read into a variable by a SELECT or FETCH statement.

Tip
When a NULL value is read into a variable, the variable remains
NULL unless it is changed in a script.

¢ The SetNull function is used in a script to set the variable explicitly to
NULL. For example:

string city // city is an empty string.
SetNull(city) // city is set to NULL.

NULL values

NULLs in functions and expressions

Any function that has a NULL value for any argument returns NULL. Any
expression that has a NULL variable results in NULL.

Examples None of the following statements will make the computer beep. The
variable nbr is set to NULL, so each statement evaluates to NOT TRUE.

int Nbr

// Set Nbr to NULL.

SetNull (Nbr)

IF Nbr =1 THEN Beep(1l)

IF Nbr <> 1 THEN Beep(1l)

IF NOT (Nbr = 1) THEN Beep(1l)

In the following IF... THEN statement, the expression evaluates to NOT
TRUE, so the ELSE is executed.

int a
SetNull(a)
IF a = 1 THEN

MessageBox("Value", "a = 1")
ELSE

MessageBox("Value", "a NULL")
END IF

This is very useful. For example, the following statement displays a
message if no control has focus (if no control has focus, GetFocus returns a
null object reference).

IF GetFocus() THEN
// Some processing
ELSE
MessageBox("Important", "Specify an option!")
END IF

Testing for NULL

To test whether a variable or expression is NULL, use the IsNull function.
You cannot use an equal sign (=) to test for NULL.

Examples These statements show the correct and incorrect way to test for NULL.
IF IsNull(a) THEN ... // This is correct.
IF a = NULL THEN ... // This is not valid.

10

Chapter 1 Language Basics

Reserved words

The words PowerBuilder uses internally are called reserved words and
generally cannot be used as identifiers. The exceptions are Parent, This,
ParentWindow, and Super. You can use these pronouns to make general
references in scripts to objects and controls.

& For a list of PowerBuilder reserved words, see Appendix B,
"Reserved Words."

Parent, This, ParentWindow, and Super

Parent

Window controls

When you use Parent, This, ParentWindow, or Super to make a general
reference to an object or control, the reference is correct even if the name
of the object or control changes.

You can use these pronouns in functions to cause an event in an object or
control, or to manipulate or change an object or control. You can also use
these pronouns to obtain or change the setting of an attribute.

Each of these pronouns has a specific meaning and use.

You can use the pronoun Parent in the following scripts:
¢ Scripts for a control in a window

¢ Scripts for a custom user object

¢ Scripts for a Menultem

Where you use Parent determines what it references.

When you use Parent in a script for a control (such as a CommandButton),
Parent refers to the window that contains the control. For example, if you
include the following statement in the script for the Clicked event in a
CommandButton within a window, clicking the button closes the window
containing the button:

Close(Parent)

11

Reserved words

User object
controls

Menultems

This

Examples

12

If you include the following statement in the script for the
CommandButton, clicking the button displays a horizontal scrollbar within
the window (sets the HScrollBar attribute of the window to TRUE).

Parent.HScrollBar = TRUE
When you use Parent in a script for a control in a custom user object,
Parent refers to the user object. For example, if you include the following

statement in a script for the Clicked event for a CheckBox in a user object,
clicking the checkbox hides the user object.

Parent.Hide()
If you include the following statement in the script for the CheckBox,

clicking the checkbox disables the user object (sets the Enabled attribute of
the user object to FALSE).

Parent.Enabled = FALSE
When you use Parent in the script for a Menultem, Parent refers to the
Menultem on the level above the Menultem the script is for. For example,
if you include the following statement in the script for the Clicked event in

the Menultem Select All under the Menultem Select, clicking Select All
disables the Menultem Select.

Parent.Disable()

If you include the following statement in the script for the Clicked event in
the Menultem Select All, clicking Select All checks the Menultem Select.

Parent.Checked = TRUE

The pronoun This refers to the window, user object, Menultem, application
object, or control itself.

For example, if you include the following statement in the script for the
Clicked event for a CommandButton, clicking the button changes the
horizontal position of the button (changes the button's X attribute).

This.X = This.X + 50

Similarly, the following statement in a script for a Menultem places a
checkmark next to the Menultem.

This.Check()

Chapter 1 Language Basics

Why include This

ParentWindow

Examples

Super

In the script for an object or control, you can refer to the attributes of the
object or control without qualification. However, it is good programming
practice to include This to make the script easy to read and to add
clarification.

For example, if you omit This in the statement shown above, the statement
accomplishes the same result but looks like this.

X =x + 50
However, if you omit This and there is a variable named x within the scope

of the script, the variable takes precedence (the script adds 50 to the
variable x, not to the X attribute of the control).

Also, you can use This in a function call to pass a reference to the object
containing the script, such as:

ReCalc(This)

The pronoun ParentWindow refers to the window that a menu is associated
with at execution time. ParentWindow can be used only in scripts for
Menultems.

For example, the following statement in a script for a Menultem closes the
window the menu is associated with at execution time.

Close(ParentWindow)

This statement in the script for a Menultem reduces the height of the
window the menu is associated with at execution time.

ParentWindow.Height = ParentWindow.Height/2

However, the following statement in the script for a Menultem is not valid.
You cannot use ParentWindow to qualify a reference to a control.

ParentWindow.sle Result.Text = ... // INVALID

When you write a script for a descendant object or control, you can call
scripts written for any ancestor. You can directly name the ancestor in the
call, or you can use the reserved word Super to refer to the immediate
ancestor (parent).

13

Reserved words

Examples

Summary

14

For example, to call the parent's Clicked script, code the following.

CALL Super::Clicked

Note that you can't use Super to call scripts associated with controls in the
ancestor window.

If you are calling an ancestor function, you only need to use Super if the
descendant has a function with the same name and the same arguments as
the ancestor function. Otherwise, you would simply call the function with
no qualifiers.

This example calls the ancestor function wf_myfunc. Presumably, the
descendant also has a function called wf_myfunc.

Super::wf_myfunc()

You can only use Super in an event or function associated with a direct
descendant of the ancestor who's function is being called. Otherwise the
compiler will return a syntax error. The example above would have to be
part of a script or function in the descendant window, not one of the
window's controls. For example, if it were in the Clicked event of a button
on the descendant window, you would get a syntax error when the script
was compiled.

Reserved word In a script for a Refers to the
Parent Control in a window Window containing the control
Control in a custom user | Custom user object containing
object the control
Menultem Menultem on the level above
the item the script is for
This Window, custom user Object or control itself
object, Menultem,
application object, or
control
ParentWindow Menultem Window the Menultem is
associated with at execution
time
Super A descendant object or Parent
control

Chapter 1 Language Basics

Statement continuation and separation

Although you typically put one statement on each line, you will
occasionally want to continue a statement to more than one line or combine
multiple statements on a single line.

Continuation character

The PowerScript continuation character is the ampersand (&). To continue
a statement to another line, insert an ampersand wherever there is white
space at the end of a line and then start the new line. The ampersand must
be the last nonwhite character on the line (or the compiler will consider it
part of the statement). White space is discussed at the end of this chapter.

Examples This statement is continued across two lines.

IF Index = 3 AND &
Count =4 THEN Beep(4)

This statement is continued across three lines.
Total-Cost = Prices&

* Quantity +&
(Tax + Shipping)

Continuing a quoted string

You can continue a quoted string by simply placing an ampersand in the
middle of the string and continuing the string on the next line.

IF Employee_District = "Eastern United State and&
Eastern Canada" THEN ...

Note that any white space (for example, tabs and spaces) before the
ampersand and at the beginning of the continued line is part of the string.

To keep unwanted white space out of the string, a better way to continue a
quoted string is to enter a quotation mark before the continuation character
(‘& or "&, depending on whether the string is delimited by single or double
quotation marks) at the end of the first line of the string and a plus sign
and a quotation mark (+' or +") at the start of the next line.

15

Statement continuation and separation

Examples

This method ensures that you do not inadvertently include unwanted
characters, such as tabs or spaces, in the string literal. The examples in the
PowerBuilder documentation and online Help use this method to continue
quoted strings.

The following statement uses only the ampersand to continue the quoted
string in the IF...THEN statement to another line. Note that a tab was used
at the start of the second line to make the script easier to read.

IF Employee District = "Eastern United States and&
Eastern Canada" THEN ...

When you use the method shown above to continue the string, the compiler
includes the tab in the string, which may result in an error. When you use
the recommended method (shown below), the tab is not included in the
string.
IF Employee District = "Eastern United States and "&
+" Eastern Canada" THEN ...

Continuing a variable name

Examples

You cannot split a line by inserting the continuation character within a
variable name. This will cause an error.

The following statement will fail, because the continuation character splits
the variable name (Quantity).

Total-Cost = Price * Quan&
tity + (Tax + Shipping)

The following statement is valid, because "Price * Quantity + (Tax +
Shipping)" is a quoted string, so Quantity can be split.

Total-Cost = "Price * Quan"&
+"tity + (Tax + Shipping)"

Continuing a comment

16

Do not use a continuation character to continue a comment. The
continuation character is considered part of the comment and is ignored by
the compiler.

Chapter 1 Language Basics

Continuing a SQL statement

Do not use a continuation character to continue a SQL statement. In
PowerBuilder, SQL statements always end with a semicolon (;). The
compiler considers everything from the start of a SQL statement until it
encounters a semicolon to be part of the SQL statement. A continuation

character in a SQL statement is considered part of the statement and
usually causes an error.

Statement separator

Example

The PowerScript statement separator is the semicolon (;). Use it to separate
multiple statements o a single line to conserve space when there are a
number of short, related statements in a script.

The following line contains three short statements.

A=B+C; D=E+ F; Count = Count + 1

17

White space

White space

Blanks, tabs, formfeeds, and comments are forms of white space. The
compiler ignores them unless they are part of a string literal (enclosed in
single or double quotation marks).

Examples In this example, the spaces and the comment in the expression are white
space, so the compiler ignores them:
A + B /*Adjustment factor */+C
However, the spaces in the following expression are within a string literal,
so the compiler does not ignore them.

"The value of A + B is:"

The subtraction operator

Unless you have prohibited the use of dashes in identifiers, you must
surround the subtraction operator (minus sign) with spaces. If you don't,
PowerBuilder will consider the operator part of a variable name:

Order - Balance // Subtracts Balance from Order
Order-Balance // A variable named Order-Balance

&~ For information on the use of dashes in names, see "Identifier names"
on page 4.

18

CHAPTER 2

Data Types

About this chapter This chapter describes the three kinds of data types provided by
PowerScript.

Contents Topic Page
Standard data types 20
System object data types 27
Enumerated data types 30

19

Standard data types

Standard data types

The standard data types are the familiar data types that are used in many
programming languages, including char, integer, decimal, long, and
string. In PowerScript, you use these data types when you declare variables
or arrays.

This section:
¢ Lists all standard PowerScript data types
¢ Describes the use of literals

¢ Describes the string and char data types

List of the standard data types
The following table lists all standard PowerScript data types.

Data type Description

Blob Binary large object. Used to store an unbounded amount of
data (for example, generic binary, image, or large text,
such as a word-processing document).

Boolean Contains TRUE or FALSE.
Char or character A single ASCII character.

Date The date, including the full year (1000 to 3000), the
number of the month (01 to 12), and the day (01 to 31).

20

Chapter 2 Data Types

Data type

Description

DateTime

Decimal or Dec

Double

Integer or Int

Long

Real

String

Time

UnsignedInteger,
UnsignedInt,
or Ulnt

UnsignedLong or
ULong

The date and time in a single data type, used only for
reading and writing DateTime values from and to a
database. To convert DateTime values to data types that
you can use in PowerBuilder, use:

¢ The Date(datetime) function to convert a datetime value
to a PowerBuilder date value after reading from a
database

¢ The Time(datetime) function to convert a datetime
value to a PowerBuilder time value after reading from a
database

¢ The DateTime (date, time) function to convert a date
and (optional) time to a DateTime before writing to a
DateTime column in a database

PowerBuilder supports microseconds in the database
interface for any DBMS that supports microseconds.

Signed decimal numbers with up to 18 digits.

You can place the decimal point anywhere within the 18
digits. For example, 123.456, 0.000000000000000001, or
12345678901234.5678.

A signed floating-point number with 15 digits of precision
and a range from 2.2E-308 to 1.7E+308.

16-bit signed integers, from -32768 to +32767.

32-bit signed integers, from
-2,147,483,648 to +2,147,483,647.

A signed floating-point number with six digits of precision
and a range from 1.17 E -38 to 3.4 E +38.

Any ASCII characters with variable length (0 to 60,000).

The time in 24-hour format, including the hour (00 to 23),
minute (00 to 59), second (00 to 59), and fraction of second
(up to six digits) with a range from 00:00:00 to
23:59:59.999999.

PowerBuilder supports microseconds in the database
interface for any DBMS that supports microseconds.

16-bit unsigned integers, from 0 to 65,535.

32-bit unsigned integers, from 0 to 4,294,967,295.

21

Standard data types

Using literals

You use literals to assign values to variables of the standard data types.
PowerScript supports the following types of literals: date, decimal, integer,
real, string, and time.

You use integer literals to assign values to data types that can contain only
whole numbers and real literals to assign values to the data types real and
double.

The following table describes each type of literal.

Type Description

Date The date, including the full year (1000 to 3000), the number of
the month (01 to 12), and the day (01 to 31), separated by
hyphens. For example:

1992-12-25 // December 25, 1992
1995-02-06 // February 6, 1995

Decimal Any number with a decimal point and no exponent. The plus
sign is optional (95 and +95 are the same). For numbers
between zero and one, the zero to the left of the decimal point is
optional (for example, 0.1 and .1 are the same). For whole
numbers, zeros to the right of the decimal point are optional
(32.00, 32.0, and 32. are all the same). For example:

12.34 0.005 14.0 15
16. -6500 +3.5555

Integer Any whole number (positive, negative, or zero). The leading
plus sign is optional (18 and +18 are the same). For example:

1 123 1200 +55 =32

Real A decimal value, followed by E, followed by an integer; no
spaces are allowed. The decimal number before the E follows all
the conventions specified above for decimal literals. The leading
plus sign in the exponent (the integer following the E) is
optional (3E5 and 3E+5 are the same). For example:

2E4 2.5E78 +6.02E3 -4.1E-2
-7.45E16 7.7E+8 3.2E-45

String As many as 1024 characters enclosed in single or double quotes,
including a string of zero length or an empty string. For
example:

"CAT" "123" 'C:\WEST94' "

22

Chapter2 Data Types

Type Description

Time The time in 24-hour format, including the hour (00 to 23),
minute (00 to 59), second (00 to 59), and fraction of second (up
to six digits) with a range from 00:00:00 to 23:59:59.999999.
You separate parts of the time with colons, except for fractional
sections, which should be separated by a decimal point. For
example:

21:09:15 // 15 seconds after 9:09 pm
06:00:00 // Exactly 6 am

10:29:59 // 1 second before 10:30 am
10:29:59.9 // 1/10 sec before 10:30 am

Using strings and chars

Strings

Chars

PowerBuilder provides two character-based data types: char and string.
Chars contain one character; strings can contain multiple characters. You
can define arrays of either type.

Most of the character-based data in your application, such as names,
addresses, and so on, will be defined as strings. PowerScript provides many
functions that you can use to manipulate strings, such as a function to
convert characters in a string to uppercase and functions to remove leading
and trailing blanks.

If you have character-based data that you will want to parse in an application,
you might want to define it as an array of type char. Parsing a char array is
easier and faster than parsing strings. Also, if you will be passing character-
based data to external functions, you might want to use char arrays instead of
strings.

&~ For more information about passing character-based data to external
functions, see Chapter 6, "Functions."

Using quotation marks

You can use either single or double quotation marks with strings and
chars. For example, these two assignments are equivalent.
string sl

sl "This is a string"
sl 'This is a string'

Similarly, these two assignments are equivalent.

23

Standard data types

char c
C = "T"
c P ITI

You can embed a quotation mark in a string literal if you enclose the literal
with the other quotation mark. For example:

string sl

sl = "Here's a string."
results in the string Here's a string.
You can also use a tilde (~) to embed a quotation mark in a string literal.
For example:

string sl = 'He said, "It~'s good!"'

Complex nesting When you nest a string within a string, which is nested in another string,

you can use tildes to tell the parser how to interpret the quotation marks.
Each pass through the parser strips away the outermost quotes and

interprets the character after each tilde as a literal. Two tildes become one
tilde and tilde-quote becomes the quote alone.

This string has two levels of nesting.

" " on

"He said ~"she said ~~~"Hi ~~~" ~

The first pass results in:

non

He said "she said ~"Hi ~

The second pass results in:

she said "Hi"

Finally, the third pass results in:
Hi

A more realistic example is a string for the Modify function that sets a
DataWindow attribute. The argument string often requires complex
quotation marks because you must specify one or more levels of nested
strings. To figure out the quotation marks, consider how PowerBuilder will
parse the string. The following string is a possible argument for the Modify
function. It mixes single and double quotes to reduce the number of tildes.

"bitmap_1l.Invert='0~tIf(empstatus=~~'A~~',0,1)""

24

Chapter 2 Data Types

The double quotes tell PowerBuilder to interpret the argument as a string.
It contains the expression being assigned to the Invert attribute, which is
also a string, so it must be quoted. The expression itself includes a nested
string, the quoted A. First, PowerBuilder evaluates the argument for
Modify and assigns the single-quoted string to the Invert attribute. In this
pass through the string, it converts two tildes to one. The string assigned to
Invert becomes:

'O[tab]If(empstatus=~'A~',0,1)"'

Finally, PowerBuilder evaluates the attribute's expression, converting tilde-
quote to quote, and sets the bitmap's colors accordingly.

There are many ways to specify quotation marks for a particular set of
nested strings. The following expressions for the Modify function all have
the same end result.

"emp.Color = ~"0~tIf(stat=~-~~"a~~~",255,16
~"0~tIf(stat=~~'a~~',255,16711680)~""
"emp.Color = 'O~tIf(stat=~~'a~~',255,16711680)"'"

~"0~tIf(stat="'a',255,16711680)~""

"emp.Color

"emp.Color

Rules for quotation When nesting quoted strings, the following rules of thumb may help:

marks and tildes

A tilde tells the parser that the next character should be taken as a
literal, not a string terminator.

Pairs of single quotes (') can be used in place of pairs of tilde double
quotes (~").

Pairs of tilde tilde single quotes (~~') can be used in place of pairs of
triple tilde double quotes (~~~").

Converting between strings and chars

There is no explicit char literal type. String literals convert to type char
using the following rules:

¢

When a string literal is assigned to a char variable, the first character
of the string literal is assigned to the variable. For example:

char ¢ = "xyz"
results in the character x being assigned to the char variable c.

Special characters (such as newline, formfeed, octal, hex, and so on)
can be assigned to char variables using string conversion, such as:

char ¢ = "~n

25

Standard data types

Also, string variables assigned to char variables convert using the same
rules. A char variable assigned to a string variable results in a one-
character string.

Assigning strings to char arrays

As with other data types, you can use arrays of chars. Assigning strings to
char arrays follows these rules:

¢ If the char array is unbounded (that is, if it is defined as a variable-size
array), the contents of the string are copied directly into the char array.

¢ If the char array is bounded and its length is less than or equal to the
length of the string, the string is truncated in the array.

¢ If the char array is bounded and its length is greater than the length of
the string, the entire string is copied into the array along with its zero
terminator. Remaining characters in the array are undetermined.

Assigning char arrays to strings

When a char array is assigned to a string variable, the contents of the array
are copied into the string up to a zero terminator, if found, in the char
array.

Using both strings and chars in an expression

Expressions using both strings and char arrays promote the chars to strings
before evaluation. For example:

char c

if (c = "x") then

promotes the contents of c to a string before comparison with the
string "x".

Using chars in PowerScript functions

All PowerScript functions that take strings also take chars and char arrays,
subject to the conversion rules described above.

26

Chapter 2 Data Types

System object data types

In PowerBuilder applications, you manipulate objects such as windows,
menus, command buttons, listboxes, and graphs. Internally, PowerBuilder
defines each of these kinds of objects as a data type. Usually you don't need
to concern yourself with these objects as data types — you simply define
the objects in a PowerBuilder painter and use them.

But there are times when you need to understand how PowerBuilder
maintains its system objects in a hierarchy of data types. For example,
when you need to define instances of a window, you will define variables
whose data type is window. When you need to create an instance of a menu
to pop up in a window, you will define a variable whose data type is menu.

This section describes the PowerBuilder system object hierarchy.

Using the Class browser

The easiest way to understand the hierarchy of system objects is to use the
Class browser.

< To open the Class browser:
1 Open the Library painter.
2 Select Utilities> Browse Class Hierarchy from the menu bar.

The Class browser displays.

Class Browser

application
dynamicdescriptionarea
dynamicstagingarea
ernor

function_object
graphicobject

menu

window

windowobject

dragobject
checkbox
commandbutton
picturebutton

datawindow
dropdownlistbox

27

System object data types

3 Select the System button in the Object types box to see the system
objects. (Clicking any of the other buttons displays the inheritance
hierarchy of objects that have been created in the current application.)

About the system object hierarchy

Looking at the
hierarchy

Objects as data
types

Examples

28

PowerBuilder maintains its system objects in a class hierarchy. Each type
of object is a class. The classes form an inheritance hierarchy of ancestors
and descendants.

By scrolling through the list of classes in the Class browser, you can see
the hierarchy. The Class browser uses indentation to show inheritance. In
the preceding screen, for example, you can see that at the top of the
hierarchy is PowerObject—all PowerBuilder system objects are derived
from PowerObject.

Looking further down the list, you see GraphicObject, which is the class
that serves as the ancestor to all the graphical objects you use in
PowerBuilder applications. For example, Menu is a type of
GraphicObject—that is, the Menu class is derived from the GraphicObject
class. Window is also a type of GraphicObject.

All the classes shown in the Class browser are actually data types that you
can use in your applications. You can define variables whose type is any
class.

For example, to define a window variable, you could code:
window mywin
To define a menu variable, you could code:
menu mymenu
If you have a series of buttons in a window and for some reason need to
keep track of one of them (for example, the last one clicked), you could

declare a variable of type CommandButton and assign it the appropriate
button in the window.

// Instance variable in a window
commandbutton LastClicked

// In Clicked event for a button in the window.
// Indicates that the button was the last one
// clicked by the user.

LastClicked = This

Chapter 2 Data Types

&~ For more
information

Because it is a CommandButton, the LastClicked variable has all the
attributes of a CommandButton. After the last assignment above,
LastClicked's attributes have the same values as the most recently clicked
button in the window.

To learn more about working with instances of objects through data types,
see the following chapters in the User's Guide.

Chapter Describes

"Defining Windows" Creating instances of windows
"Understanding Inheritance" Using inheritance in an application
"Managing Libraries" Using the Class browser

29

Enumerated data types

Enumerated data types

Like the system object data types, enumerated data types are specific to
PowerScript. These data types are used in two ways:

¢ As arguments in functions

¢ To specify the attributes of an object or control

About enumerated data types

Each enumerated data type can be assigned a fixed set of values. Values of
enumerated data types always end with an exclamation point (!).

For example, the enumerated data type Alignment, which specifies the
alignment of text, can be assigned one of the following three values:
Center!, Left!, and Right!.

When you enter enumerated data type values, do not enclose the value in
quotation marks.

// This is correct.
mle edit.Alignment = Left!

// The following statement will NOT compile.
// "Left!" is a string and the compiler

// expects an enumerated data value.

mle edit.Alignment="Left!"

Advantage of Enumerated data types have the following advantage over standard data
enumerated types types: when an enumerated data type is required, the compiler checks the
data and makes sure it is the correct type.

For example, to set the alignment of text in a line edit in a script, set the
Alignment attribute to one of the Alignment enumerated data values, such
as:

mle edit.Alignment=Right!

If you set the Alignment attribute to any other data type or value, the
compiler will not allow the value.

30

Chapter 2 Data Types

Listing the enumerated data types

You can list all the enumerated data types and their values in the Object
browser.

% To list the enumerated data types:
1 Do one of the following:

¢ Open the PowerScript painter and click the Browse icon or select
Edit>Browse Objects from the menu bar.

¢ Open the Library painter and select Utilities™ Browse Objects.
The Object browser opens.

2 Select Enumerated as the Object Type and Attributes as the Paste
Category.

PowerBuilder lists all enumerated data types in the Objects box and
the valid values of the selected data type in the Paste Values box.

ect Browser

b i
alignment
arrangeopen
arrangetypes
border
borderstyle
button
converttype
dragmodes
dwbuffer

| |dwitemstatus

{fileaccess

31

Enumerated data types

&

32

For more
information

To learn how to

See

Use enumerated data types in attribute
assignments

Use enumerated data types in
PowerScript functions

Use the Object browser

Objects and Controls, which lists all
attributes of the PowerBuilder objects
and controls

Function Reference

Chapter 3, "Writing Scripts," in the
User's Guide

CHAPTER 3
Declaration

About this chapter

Contents

S

Before you use a variable or array in a script, you must declare it (give it a
type and a name). For example, before you can use an integer variable, you
must identify it as an integer and assign it a name.

This chapter explains how to declare variables and arrays.

Topic Page
Types of variables 34
Declaring variables 41
Declaring arrays 46

33

Types of variables

Types of variables

PowerScript recognizes four types of variables:
¢ Global variables, which are accessible anywhere in an application

¢ Instance variables, which are associated with one instance of an object,
such as a window

¢ Shared variables, which are associated with a type of object

¢ Local variables, which are accessible only in one script

Global variables

You use global variables when you have data that needs to be available
anywhere: global variables can be used without qualification in any script
in an application.

For example, if you have defined a global integer variable named
WinCount, you can reference the variable directly in any script, such as:

WinCount = WinCount + 1

< To declare global variables:

¢ Select Declare>Global Variables in the Window, User Object, Menu,
or PowerScript painter.

Instance variables

You use instance variables when you have variables that need to be
accessible in more than one script within an object, but that don't need to
be global throughout the entire application. For example, several scripts for
a window might reference an employee ID. You can declare EmpID as an
instance variable for that window; all scripts in that window have access to
that variable. In effect, instance variables are attributes of the object.

34

Chapter 3 Declarations

Instance variables can be application-level, window-level, user-object-level,
or menu-level variables:

¢ Application-level variables are declared within the application object.

They are always available in any scripts for the application object. In
addition, you can make them public so that they are accessible
throughout the application.

¢ Window-level variables are declared within a window.

They are always available in any scripts for the window in which they
are declared and the controls in that window. In addition, you can
make them public so that they are accessible throughout the
application.

¢ User-object-level variables are declared within a user object.

They are always available in any scripts for the user object in which
they are declared and the controls in that user object. In addition, you
can make them public so that they are accessible throughout the
application.

¢ Menu-level variables are declared within a menu.

They are always available in any scripts for the menu in which they
are declared and its Menultems. In addition, you can choose to make
access to them available throughout the application.

Declaring instance variables
% To declare instance variables:

¢ Select Declare> Instance Variables in the Window, User Object,
Menu, or PowerScript painter.

35

Types of variables

Specifying access to instance variables

Two ways to
specify access

36

When you declare an instance variable you can also specify the access
level for the variable—that is, you can specify which scripts have access to
the instance variable.

Access You can reference the instance variable in

Public Any script in the application.

Private Scripts for events in the object for which the variable is
declared. You cannot reference the variable in descendants of
the object.

Protected Scripts for the object for which the variable is declared and its
descendants.

To specify an access level when you declare an instance variable, include
the access level in the declaration. If you don't specify an access level, the
variable is defined as Public.

You can specify the access level using one of two formats. In the first
format, you include the access specifier on the same line as the declaration,
before the data type.

access-specifier type variablename
access-specifier type variablename

For example:

private integer a, n
public integer Subtotal
protected integer WinCount

In the second format, you can group declarations by including the access
specifier on its own line, followed by a colon (:).

access-specifier:
type variablename
type variablename

For example:

Private:
integer a=10, b=24
string Name, Addressl
Protected:
integer Units
double Results
string Lname

Chapter 3 Declarations

Public:
integer Weight
string Location="Home"

In the preceding example, a, b, Name, and Address1 are Private variables;
Units, Results, and Lname are Protected variables; and Weight and
Location are Public variables.

&> For more information about declaring variables of different data
types, see "Declaring variables" on page 41.

How instance variables are initialized

When using
multiple instances
of windows

When you define an instance variable for a window, menu, or application
object, the instance variable is initialized when the object is opened. Its
initial value is the default value for its data type or the value specified in
the variable declarations.

When you close the object, the instance variable ceases to exist. If you open
the object again, the instance variable is initialized again.

Tip
If you need a variable that continues to exist after the object is closed,
use a shared variable (see "Shared variables" on page 39).

When you build a script for one of multiple instances of a window, instance
variables can have a different value in each instance of the window. For
example, to set a flag based on the contents of the instance of a window,
you would use an instance variable.

Tip
If you need a variable that keeps the same value over multiple instances
of an object, use shared variables (see "Shared variables" on page 39).

Referring to instance variables

You can refer to instance variables in scripts if there is an instance of the
object open in the application. Depending on the situation, you might need
to qualify the name of the instance variable with the name of the object
defining it.

37

Types of variables

Using unqualified
names

Using qualified
names

38

You can refer to instance variables without qualifying them with the object
name in the following cases:

¢ For application-level variables, in scripts for the application object

¢ For window-level variables, in scripts for the window itself and in
scripts for controls in that window

¢ For user-object-level variables, in scripts for the user object itself and
in scripts for controls in that user object

¢ For menu-level variables, in scripts for the menu itself and in scripts
for the Menultems in that menu

For example, if w_emp has an instance variable EmpID, in any script for
w_emp or its controls, you can reference EmplID without qualification,
such as:

sle_id.Text = EmpID

In all other cases, you need to qualify the name of the instance variable
with the name of the object using dot notation as follows.

object.instance-variable

(Of course, this applies only to Public or Protected instance variables. You
cannot reference Private instance variables outside the object at all.)

For example, to refer to the w_emp instance variable EmpID from a script
outside the window, you need to qualify the variable with the window
name, such as:

sle ID.Text = w_emp.EmpID

There is another situation in which references must be qualified: suppose
that w_emp has an instance variable EmplD and that in w_emp there is a
command button that declares a local variable EmpID in its Clicked script.
In that script, you must qualify all references to the instance variable, such
as:

Parent.EmpID

Chapter 3 Declarations

Shared variables

02
0.0

Shared variables, like instance variables, can be application-level, window-
level, user-object level, or menu-level variables. Shared variables are
associated with the object definition, rather than an instance of the object.
Therefore, all instances of the object type have the shared variable in
common.

For example, if you define a shared variable for the window w_emp, each
instance of w_emp open in the application uses the same variable: the
value of the shared variable is the same in each instance of w_emp.

Shared variables retain their value when an object is closed and then
opened again.

Shared variables are always private. You can access a shared variable only
in scripts for the object for which the variable is declared, including scripts
for controls associated with the object. You cannot reference the variable in
descendants of the object. If you require more general access to the
variable, you can make it global instead.

To declare shared variables:

¢ Select Declare>Shared Variables in the Window, User Object, Menu,
or PowerScript painter.

Declaring a shared variable is similar to declaring an instance variable,
except there is no access specifier. You specify only the type and the
variable name.

type variablename

For example:

integer Subtotal
integer WinCount

You reference shared variables the same way you reference instance
variables (see page 37).

&>” For more information about declaring variables of different data
types, see "Declaring variables" on page 41.

39

Types of variables

How shared variables are initialized

Local variables

When you use a shared variable in the script for a window or menu, the
variable is initialized when the first instance of the window is opened.
When you close the window, the shared variable continues to exist until
you exit the application. If you open the window again without exiting the
application, the shared variable will have the value it had when you closed
the window.

For example, if in the script for a window you set the shared variable Count to
20 and close the window, and then reopen the window without exiting the
application, Count will be equal to 20.

When using multiple instances of windows

If you have multiple instances of the window in the example above,
Count will be equal to 20 in each instance. Since shared variables are
shared among all instances of the window, changing Count in any
instance of the window changes it for all instances.

Use local variables when you need a temporary variable to hold some
value. Local variables are declared in a script and can be used only in that
script.

How PowerBuilder looks for variables

40

When PowerBuilder executes a script and finds an unqualified reference to
a variable, it searches for the variable in the following order:

1 Alocal variable

2 A shared variable

3 A global variable

4 An instance variable

As soon as PowerBuilder finds a variable with the specified name, it uses
the variable's value.

Chapter 3 Declarations

Declaring variables

There are two sets of syntax for declaring variables: a standard syntax for
all variable data types except blob and decimal, and a syntax for blob and
decimal variables.

Standard declarations

To declare any variable except a blob or decimal, enter the data type
followed by one or more spaces and the variable name:

type variablename

Examples int count // Declares count as an
// as a long

string first-name // Declares first-name as
// a string
// Strings do not have
// predefined sizes

You can declare multiple variables of the same data type on one line. To
declare additional variables of the same type on the same line, enter a
comma and the next variable name.

int a, b, ¢ // Declares a, b, and c

X and Y as variable names

Although you may think of x and y as typical variable names, in
PowerBuilder they are also attributes that specify an object's onscreen
coordinates. If you use them as variables and forget to declare them, you
will not get a compiler error. PowerBuilder will assume you want to
move the object, which may lead to interesting activity in your
application.

Blob declarations

To declare a blob variable, enter Blob followed by the length of the blob (in
bytes) enclosed in braces ({ }) and the variable name. The length is
optional, and braces are required only if you specify the length.

blob {size} variablename

41

Declaring variables

If you enter the length and exceed the declared length in a script,
PowerBuilder will truncate the blob. If you do not enter the length in the
declaration, the blob has an initial length of 0 and PowerBuilder will adjust
its size each time it is used at execution time.

Blobs cannot be initialized with a value. Only their size can be initialized.

Examples blob Emp Picture // Declares Emp_Picture
// a blob with 0 length

blob{100} Emp_ Picture // Declares Emp_Picture
// a blob with a length of
// 100 bytes

Decimal declarations

To declare a decimal variable, enter Dec or Decimal followed by the
number of digits after the decimal point (the precision) enclosed in braces
({}) and the variable name. The braces are required only if you enter the
precision.

decimal {precision} variablename

If you do not enter the precision in the declaration, the variable takes the
precisions assigned to it in the script.

Examples decimal{2} Amount // Declares Amount as a
// decimal number with 2
// digits after the
// decimal point

dec{4} Ratel, Rate2 // Declares Ratel and
// Rate2 as decimal
// numbers with 4
// digits after the
// decimal point

decimal{0} Balance // Declares Balance as a
// decimal with 0 digits
// after the decimal point

dec Result

dec{2} Opl, Op2

Result = Opl * Op2 // Result now has 4 digits
// after the decimal point

42

Chapter 3 Declarations

Initial values

When you declare a variable, you can assign an initial value to the variable
or accept the default initial value.

Assigning values

To assign a value to a variable when you declare it, place an equal sign (=)
and a literal appropriate for that variable data type after the variable.

Examples int count=5 // Declares count as an integer
// and assigns 5 to it

int a=5, b=10 // Declares a and b as integers
// and assigns 5 to a and 10 to b

string method="UPS" // Declares method as a
// string and assigns
// "UPS" to it

int a=1l, b, c=100 // Declares a, b, and c
// as integers, assigns 1 to
// a, lets b default to 0,
// and assigns 100 to c

date StartDate = 1993-02-01 // Declares StartDate
// as a date and
// assigns Feb 1, 1993,
// to it

Declaring variables

44

Initializing a variable with an expression
You can initialize a variable with the value of an existing variable or
expression, such as:

integer i = 100

integer j = i
When you do this, the second variable is assigned the value of the
expression when the script is compiled. The initialization is not
reevaluated during execution.

This is an important point if the value of the expression will change
based on current conditions. For such values, declare the variable and
assign the value in separate statements.

For example, in the following declaration, the value assigned to d is the
date the script is compiled, not the date the application is run.

date d = Today()
In contrast, the following statements result in d being set to the date the
application is run.

date d
d = Today()

Chapter 3 Declarations

Using default values

If you do not assign a value to a variable when you declare it, PowerBuilder
sets the variable to the default value for its data type.

The following table lists the default values for variable data types.

Variable data type Default value

Blob A blob of 0 length; an empty blob
Char ASCII value 0

Boolean FALSE

Date 1900-01-01 (January 1, 1900)
DateTime 1900-01-01 00:00:00
Numeric (integer, long, decimal, 0

real, double, UnsignedInteger, and

UnsignedLong)

String Empty string ("")

Time 00:00:00 (midnight)

45

Declaring arrays

Declaring arrays

An array is an indexed collection of elements of a single data type. An
array can be single- or multidimensional. Single-dimensional arrays can
have a fixed or variable size, and single-dimensional arrays without a
range can have approximately two gigabytes of elements. Each dimension
of a multidimensional array can have two gigabytes of elements.

To declare an array, include square brackets after the variable name. To
declare a fixed-size array, include the sizes of the array in the square
brackets. For a multidimensional array, there will be a size for each
dimension.

Fixed-size arrays

When you declare a fixed-size array you specify its size. You can specify
how the elements in the array are numbered with the TO notation and you
can initialize the array elements with defaults values.

Here is an example of a single-dimensional array of three integers named
TaxCode:

int TaxCode[3] // Declares an array of 3 integers

To refer to individual array elements, use square brackets and the element
number, such as TaxCode[1], TaxCode[2], and TaxCode[3].

Default values for array elements

46

PowerBuilder initializes each element of an array to the same default value
as its underlying data type. For example, in the integer array TaxCode[3],
the elements TaxCode[1], TaxCode[2], and TaxCode[3] are all initialized
to zero.

To override the default values, initialize the elements of the array when
you declare the array by specifying a comma-separated list of values
enclosed in braces. Here is an example of an initialized one-dimensional
array of three variables:

real Rate[3]={1.20, 2.40, 4.80}

Chapter 3 Declarations

Tip
You can assign values after declaring an array using the same syntax.

integer Arrj]
Arr = {1, 2, 3, 4}

Array element numbering

Array elements start counting at 1 (TaxCode[1]). To override this default,
use the TO notation. The TO notation only applies to fixed-size arrays.

real Rate[2 to 5] // Declares array of 4 real
// numbers: Rate[2], Rate[3],
// Rate[4] and Rate[5]

int Qty[0 to 2] // Declares array of 3 integers
string Test[-2 to 2] // Declares 5 strings

In an array dimension, the second number must be greater than the first.
These declarations are invalid.

int count[10 to 5] // INVALID because 10 is
// greater than 5

int price[-10 to -20] // INVALID because -10 is
// greater than -20

Variable-size arrays

Examples

A variable-size array consists of a variable name followed by square
brackets but no number. PowerBuilder defines it by use at execution time
(subject only to memory constraints). Only one-dimensional arrays can be
variable-size arrays.

Because you don't declare the size, you can't use the TO notation to change
the lower bound of the array. Therefore, the lower bound of a variable-size
array is always 1.

This example declares a variable-size array and assigns values to three
array elements.

long price[] // Declares a variable-size
// array of any quantity of
// decimal numbers

47

Declaring arrays

price[100]=2000
price[50] =3000
price[110]=5000

When the statements above first execute, they allocate memory as follows:

¢ The statement price[100]=2000 will allocate memory for 100 long
numbers price[1] to price[100], then assign O (the default for numbers)
to price[1] through price[99] and assign 2000 to price[100].

¢ The statement price[50]=3000 will not allocate more memory, but will
assign the value 3000 to the 50th element of the price array.

¢ The statement price[110]=5000 will allocate memory for 10 more long
numbers named price[101] to price[110], then assign O (the default for
numbers) to price[101] through price[109] and assign 5000 to
price[110].

To initialize a variable-size array, list all required values in braces. The
following statement sets code[1] equal to 11, code[2] equal to 242, and
code[3] equal to 27.

int code[1={11,242,27}

Multidimensional arrays

Example

48

A fixed-size array can have more than one dimension. To specify
additional dimensions, use a comma-separated list. The amount of memory
in your system is the only limit to the number of dimensions for an array.
You cannot initialize multidimensional arrays.

Here is an example of a declared six-element two-dimensional integer
array.

int score[2,3] // Declares a 6-element,
// 2-dimensional array

The individual elements are score[1,1], score[1,2], score[1,3], score[2,1],
score[2,2], and score[2,3].

Chapter 3 Declarations

Index values

Examples

String arrays

Examples

Decimal arrays

By default, all index values of a multidimensional array start at 1, but you
can override the default with the TO notation.

The array declarations below are valid.

// 2-dimensional 75-element array
10 to 25]

int

RunRate[l to 5,

// 3-dimensional 45,000-element array

long

days[3,300,50]

// 3-dimensional 20,000-element array
staff[100,0 to 20,-5 to 5]

int

You declare string arrays the same way you declare numeric arrays.

string

string

string

string

day[7]

name[-10 to 15]

plant[3,10]

city[]

//
//
//

//
//
//

//
//
//

//
//
//
//

Declares a one-
dimensional array
of 7 strings

Declares a one-
dimensional array
of 26 strings

Declares a 2-
dimensional array
of 30 strings

Declares an array that
can hold any number of
strings and each string
can be any length

To declare a decimal array, enter Dec or Decimal, followed by the number
of digits after the decimal point (the precision) enclosed in braces ({ }),
the array name, and the dimensions of the array enclosed in square

brackets.

If you do not enter the precision in the declaration, the variable takes the
precisions assigned to it in the script.

49

Declaring arrays

Examples dec{2} Cost[10] // Declares an array of
// 10 decimal numbers
// each with 2 digits
// following the decimal
// point

decimal price[20] // Declares an array of
// 20 decimal numbers where
// each takes the assigned
// precision; no precision
// specified

dec{8} limit[] // Declares a variable-size
// array of decimal numbers
// each with 8 digits
// following the decimal
// point

dec limit[] // Declares a variable-size
// array of decimal numbers
// and does not specify the
// precision so each element
// will take the precision
// assigned

dec{2} rate[3,4] // Declares a 2-dimensional
// array of 12 decimal numbers
// each with 2 digits after
// the decimal point

decimal{3} first[10],second[15,5],third[]

// The line above declares
// 3 decimal arrays.

// Every number in each

// array has 3 digits

// after the decimal point.

Array errors

Referring to array elements outside the declared size causes an error during
execution. For example
int test[10]
test[11]=50 // This causes an execution error.
test[0]=50 // This causes an execution error.
int trial[5,10]
trial [6,2]=75 // This causes an execution error.
trial [4,11]=75 // This causes an execution error.

50

Chapter 3 Declarations

Accessing a variable-size array above its largest assigned value or below its
lowest assigned value also causes an error during execution.

int stock[]
stock[50]1=200

if stock[51]=0 then Beep(l) // This causes

// an execution error.
if stock[0]=0 then Beep(1l) // This causes

// an execution error.

51

CHAPTER 4
Operators and Expressions

About this chapter

Contents

Operators perform arithmetic calculations; compare numbers, text, and
boolean values; execute logical operations on boolean values; and
concatenate strings and blobs.

This chapter describes the operators supported in PowerScript and how to
use them in expressions.

Topic | Page
Operators 54
Operator precedence in expressions 59

53

Operators

Operators

PowerScript supports the following types of operators:
¢ Arithmetic

¢ Relational
¢ Logical
¢

Concatenation

Arithmetic operators

The following table lists the arithmetic operators.

Operator Meaning Example
+ Addition Total=SubTotal+Tax
- Subtraction Price=Price - Discount

Unless you have prohibited the use of
dashes in identifier names, you must
surround the minus sign with spaces.
For more information, see "Identifier
names" in Chapter 1, "Language

Basics."
* Multiplication Total=Quantity *Price
/ Division Factor=Discount/Price
n Exponentiation Rank=Rating"2.5

Multiplication and division

Multiplication and division are carried out to full precision (16-18 digits).
Decimal numbers are rounded (not truncated) on assignment.

Examples These examples show the values that result from various operations on
decimal values.

decimal {4} a,b,d,e,f
decimal {3} c

20.0/3 // a contains 6.6667
3 * a // b contains 20.0001

a
b

54

Chapter 4 Operators and Expressions

Subtraction

c =3 *a // ¢ contains 20.000

d=3* (20.0/3) // d contains 20.0000
e = Truncate(20.0/3, 4) // e contains 6.6666
e = Truncate(20.0/3, 5) // e contains 6.6667

If the PowerBuilder preferences variable DashesInldentifiers is set to 1,
then you must always surround the subtraction operator and the -- operator
with spaces. Otherwise, PowerBuilder interprets the expression as an
identifier.

For example:
A - B // Always means subtract B from A

A-B // Means a variable named A-B
// if DashesInIdentifiers is set to 1
// but means subtract B from A if
// DashesInIdentifiers is set to 0

& For information about setting DashesInldentifiers, see "Identifier
Names" in Chapter 1, "Language Basics." For information about the
-- operator, see "Assignment statements" in Chapter 5, "Statements."

Calculations with NULL

Examples

When you form an arithmetic expression that contains a NULL value, the
expression becomes NULL.

Tip
Thinking of NULL as undefined makes this easier to understand.

When the value of variable c is NULL, the following assignment
statements all set the variable a to NULL.

integer a, b=100, c

SetNull(c)

a = b+c // a is NULL
a=b-c // a is NULL
a = b*c // a is NULL
a = b/c // a is NULL

&~ For more information about NULL values, see Chapter 1, "Language
Basics."

55

Operators

Errors and overflows

Division by zero, exponentiation of negative values, and so on, cause errors
during execution.

Overflow of real, double, and decimal values cause errors during execution.
Overflow of signed or unsigned integers and longs cause results to wrap.

Example This example illustrates how the value of the variable i after overflow
occurs.
integer i
i = 32767
i=1i+1 // i is now -32768
Relational operators

PowerBuilder uses relational operators in relational expressions to evaluate
two or more operands. The result is always TRUE or FALSE.

The following table lists the relational operators.

Operator | Meaning Example

= Equals if Price=100 then Rate=.05
> Greater than if Price>100 then Rate=.05
< Less than if Price<100 then Rate=.05
<> Not equal if Price<>100 then Rate=.05
>= Greater than or equal if Price>=100 then Rate=.05
<= Less than or equal if Price<=100 then Rate=.05

Comparing strings

When PowerBuilder compares strings, the comparison is case-sensitive.
Trailing blanks are significant.

Case-sensitive If you compare two strings with the same text but different case, the
examples comparison fails. But if you use the Upper or Lower function, you can
ensure that the case of both strings are the same so that only the content
affects the comparison:
Cityl="Austin"
City2="AUSTIN"
if Cityl=City2 ... // Will return FALSE

56

Chapter 4 Operators and Expressions

Trailing blanks
examples

Cityl="Austin"
City2="AUSTIN"
if Upper(Cityl)=Upper(City2)... // Will return TRUE

Tip
To compare strings regardless of case, use the Upper or Lower function.
For information about these functions, see the Function Reference.

In this example, trailing blanks in one string cause the comparison to fail:
Cityl="Austin"
City2="Austin "
if Cityl=City2 ... // Will return FALSE

Tip

To remove trailing blanks, use the RightTrim function. To remove
leading blanks, use the LeftTrim function. To remove leading and
trailing blanks, use the Trim function. For information about these
functions, see the Function Reference.

Logical operators

PowerBuilder uses logical operators to form boolean expressions. The
result of evaluating a boolean expression is always TRUE or FALSE.

The following table lists the logical operators.

Operator Meaning Example

NOT Logical negation if NOT Price=100 then Rate=.05
AND Logical and if Tax>3 AND Ship<5 then Rate=.05
OR Logical or if Tax>3 OR Ship<5 then Rate=.05

NULL value evaluations

When you form a boolean expression that contains a NULL value, the
AND and OR operators behave differently. Thinking of NULL as
undefined (neither TRUE nor FALSE) makes the results easier to
calculate.

57

Operators

Examples

boolean d, e=TRUE,f

SetNull(f)
d=e and f // d is NULL
d=e or £ // d is TRUE

& For more information about NULL values, see Chapter 1, "Language
Basics."

Concatenation operator

Examples

58

The concatenation operator joins the contents of two variables of the same
type to form a longer value. You can concatenate strings and blobs.

To concatenate values, use the plus sign (+) operator.

These examples concatenate several strings.

string Test
Test = "over" + "stock" // Test contains "overstock”

string Lname, Fname, FullName
FullName = Lname + ', ' + Fname
// FullName contains last name and first name,

// separated by a comma and space.

This example shows how a blob can act as an accumulator when reading
data from a file.

integer i, fnum, loops

blob tot_b, b

FOR i = 1 to loops
bytes_read = FileRead(fnum, D)
tot_ b = tot_b + b

NEXT

Chapter 4 Operators and Expressions

Operator precedence in expressions

To ensure predictable results, all operators in a PowerBuilder expression
are evaluated in a specific order of precedence. When the operators have
the same precedence, PowerBuilder evaluates them left to right.

The following table lists the operators in descending order of precedence.

Operator Purpose

O) Grouping (see note below)

+, - Unary plus and unary minus

A Exponentiation

*/ Multiplication and division

+, - Addition and subtraction; string concatenation
=, >, <, <=, >=, <> Relational operators

NOT Negation

AND Logical and

OR Logical or

Grouping expressions

To override the order, enclose expressions in parentheses. This
identifies the group and order in which PowerBuilder will evaluate the
expressions. When there are nested groups, the groups are evaluated
from the inside out.

Example In the expression (x+(y*(a+b))), a+b is evaluated first. The sum of a and b
is then multiplied by y, and this product is added to x.

59

CHAPTER 5
Statements

About this chapter

Contents

This chapter describes the statements in PowerScript and how to use them

in scripts.

Topic Page
Assignment statements 62
CALL 64
CHOOSE CASE 65
CONTINUE 67
CREATE 68
DESTROY 69
DO...LOOP 70
EXIT 74
FOR..NEXT 75
GOTO 77
HALT and RETURN 78
IF...THEN 80

61

Assignment statements

Assignment

No multiple
assignments

Assigning array
values

Shortcuts

statements

Use assignment statements to assign values to variables. To assign a value
to a variable anywhere in a script, use the equal sign (=). For example:

Stringl = "Part is out of stock"
TaxRate = .05

Since the equal sign is also a logical operator, you cannot assign more than
one variable in a single statement. For example, the following statement
does not assign the value 0 to A and B.

A=B=0 // This will not assign 0 to A and B.
The above statement first evaluates B=0 to TRUE or FALSE and then tries
to assign this boolean value to A. When A is not a boolean variable, this
line produces an error when compiled.
You can assign multiple array values with one statement, such as:

int Arrj[]
Arr = {1, 2, 3, 4}

You can also copy array contents. For example:
Arrl = Arr2

copies the contents of Arr2 into array Arrl.

PowerScript provides the following shortcuts you can use to assign values
to variables. They have slight performance advantages over their
equivalents.

62

Assignment | Example Equivalent to
++ i++ i=i+l

- i-- i=i-1

+= i+=3 i=i+3

= i-=3 i=i-3

= i=3 i=i*3

/= i/=3 i=i/3

A= i”=3 i=i"3

Unless you have prohibited the use of dashes in variable names, you must leave
a space before -- and -= (otherwise, PowerScript thinks the minus sign is part of
a variable name).

Chapter 5 Statements

Examples

& For more information, see "Identifier names" in Chapter 1, "Language
Basics."

Here are some examples of assignments.

int 1 = 4

i ++ // i is now 5.

i -- // i is 4 again.
i += 10 // i is now 14.
i /=2 // i is now 7.

These shortcuts can be used only in pure assignment statements. They
cannot be used with other operators in a statement. For example, the
following is invalid.

int i, j
i= 12
j o= 1i ++ // INVALID

The following is valid, because ++ is used by itself in the assignment.
int i, j
i=12
i ++
j=1i

Using dot notation

Examples

To assign a value to an attribute of an object, use PowerScript dot notation
to identify the object and attribute.

object.attribute

where object is the name of the object (or the reserved word Parent,
ParentWindow, or This), and attribute is the attribute to which you assign
the value. You also use dot notation to test for or obtain the value of an
object.

This example makes a CheckBox invisible.

Chkbox_on.Visible=FALSE

This example tests the value of the string in the SingleLineEdit sle_emp.

If sle emp.Text="N" then Open(win_1)

This example calculates the value for the string Text1.

string Textl
Textl=sle_emp.Text+".DAT"

63

CALL

CALL

Description

Syntax

Examples

64

CALL calls an ancestor script from a script for a descendant object. You
can call scripts for events in an ancestor of the user object, menu, or
window. You can also call scripts for events for controls in an ancestor of
the user object or window.

CALL ancestorobject {" controlname}::event

Parameter Description
ancestorobject An ancestor of the descendant object
controlname The name of a control in an ancestor window or

custom user object

event An event in the ancestor object

The following statement calls a script for an event in an ancestor window.
CALL w_emp: :0pen
The following statement calls a script for an event in a control in an
ancestor window.
CALL w_emp cb_close::Clicked
&~ In some circumstances, you can use the Super reserved word when

ancestorobject is the descendant object's immediate ancestor. See the
discussion of Super in Chapter 1, "Language Basics."

Chapter 5 Statements

CHOOSE CASE

Description The CHOOSE CASE control structure directs program execution based on
the value of a test expression (usually a variable).

Syntax CHOOSE CASE testexpression
CASE expressionlist
statementblock
{CASE expressionlist
statementblock

6ASE expressionlist

statementblock}
{CASE ELSE
statementblock}
END CHOOSE
Parameter Description
testexpression The expression on which you want to base the
execution of the script
expressionlist One of the following expressions:
¢ A ssingle value
¢ A list of values separated by commas (for example,
2’ 4’ 6’ 8)
¢ ATO clause (for example, 1 TO 30)
¢ IS followed by a relational operator and
comparison value (for example, IS>5)
4 Any combination of the above with an implied OR
between expressions (for example, 1, 3, 5, 7, 9, 27
TO 33, 1S >42)
statementblock The block of statements you want PowerBuilder to
execute if the test expression matches the value in
expressionlist
Usage At least one CASE clause is required. You must end a CHOOSE CASE

control structure with END CHOOSE.

65

CHOOSE CASE

If testexpression at the beginning of the CHOOSE CASE statement
matches a value in expressionlist for a CASE clause, the statements
immediately following the CASE clause are executed. Control then passes
to the first statement after the END CHOOSE clause.

If multiple CASE expressions exist, then testexpression is compared to
each expressionlist until a match is found or the CASE ELSE or END
CHOOSE is encountered.

If there is a CASE ELSE clause and the test value does not match any of
the expressions, statementblock in the CASE ELSE clause is executed. If
no CASE ELSE clause exists and a match is not found, the first statement
after the END CHOOSE clause is executed.

Examples This example provides different processing based on the value of the
variable Weight.

CHOOSE CASE Weight

CASE IS<16
Postage=Weight*0.30
Method="USPS"

CASE 16 to 48
Postage=4.50
Method="UPS"

CASE ELSE
Postage=25.00
Method="FedEx"

END CHOOSE

This example converts the text in a SingleLineEdit control to a real value
and provides different processing based on its value.

CHOOSE CASE Real(sle_real.Text)
CASE is < 10.99999

sle message.Text = "Real Case < 10.99999"
CASE 11.00 to 48.99999
sle _message.Text = "Real Case 11 to 48.9999

CASE is > 48.9999

sle_message.Text "Real Case > 48.9999"

CASE ELSE
sle message.Text

"Cannot evaluate!"

END CHOOSE

66

Chapter 5 Statements

CONTINUE

Use the CONTINUE statement in a DO...LOOP or a FOR...NEXT control
structure. CONTINUE takes no parameters.

In a DO...LOOP structure

‘When PowerBuilder encounters a CONTINUE statement in a DO...LOOP,
control passes to the next LOOP statement. The statements between the
CONTINUE statement and the LOOP statement are skipped in the current
iteration of DO...LOOP. In a nested DO...LOOP structure, a CONTINUE
statement bypasses statements in the current DO...LOOP structure.

Example The following statements display a message box twice: when B equals 2
and when B equals 3. As soon as B is greater than 3, the statement
following CONTINUE is skipped during each iteration of the loop.

int A=1, B=1
DO WHILE A < 100
A = A+l
B = B+1
if B > 3 then CONTINUE
MessageBox("Hi", "B is " + String(B))
LOOP

In a FOR...NEXT structure

When PowerBuilder encounters a CONTINUE statement in a FOR.. NEXT
control structure, control passes to the following NEXT statement; the
statements between the CONTINUE statement and the NEXT statement
are skipped in the current iteration of FOR...NEXT.

Example The following statements stop incrementing B as soon as Count is greater
than 15.

int A=0, B=0, Count
FOR Count = 1 to 100

A=A+1
IF Count > 15 then CONTINUE
B=B+1

NEXT

// Upon completion, a=100 and b=15.

67

CREATE

CREATE

Description

Syntax

Usage

Example

68

The CREATE statement generates an object instance for a specified object
type. After a CREATE statement, attributes of the created object instance
can be referenced using dot notation.

The CREATE statement returns an object instance which can be stored in
a variable of the same type.

objectvariable = CREATE objecttype

Parameter | Description

objectvariable A global, instance, or local variable whose data type is
objecttype

objecttype The object data type

Use CREATE as the first reference to any Class user object. This includes
standard Class user objects, such as mailSession or Transaction.

The system provides one instance of several standard Class user objects:
Message, Error, Transaction, DynamicDescriptionArea, and
DynamicStagingArea. You only need to use CREATE if you declare
additional instances of these objects.

If you need a menu that is not part of an open window definition, use
CREATE to create an instance of the menu. (See the PopMenu function in
Function Reference.)

Use the appropriate Open function, instead of CREATE, to create an
instance of a visual user object or window.

You do not need to use CREATE to allocate memory for a standard data
type, such as integer or string, or any object that is not a class, such as the
Environment object. You can use the Class browser to find out if an object
you see in the Object browser is also a class.

This example creates a new transaction object and stores the object in the
variable DBTrans.
transaction DBTrans

DBTrans = CREATE transaction
DBTrans.DBMS = 'ODBC'

Chapter 5 Statements

DESTROY

Description DESTROY eliminates an object instance that was created with the
CREATE statement. After a DESTROY statement, attributes of the deleted
object instance can no longer be referenced.

Syntax DESTROQY objectvariable

Parameter | Description

objectvariable ’ A variable whose data type is a PowerBuilder object
Example The following statement destroys the transaction object DBTrans that was

created with a CREATE statement.
DESTROY DBTrans

69

DO...LOOP

DO...LOOP

The DO...LOOP control structure is a general-purpose iteration statement.
Use DO...LOOP to execute a block of statements while or until a condition
is true. DO... LOOP has four formats.

In all four formats of the DO...LOOP control structure, DO marks the
beginning of the statement block that you want to repeat. The LOOP
statement marks the end.

You can nest DO...LOOP control structures.

Using as DO UNTIL

Description

Syntax

70

DO UNTIL...LOOP executes a block of statements until the specified
condition is TRUE. If the condition is TRUE on the first evaluation, the
statement block does not execute.

DO UNTIL condition

statementblock
LOOP
Parameter | Description
condition l The condition you are testing
statementblock ' The block of statements you want to repeat

Chapter 5 Statements

Using as DO WHILE

Description

Syntax

DO WHILE...LOOP executes a block of statements while the specified
condition is TRUE. The loop ends when the condition becomes FALSE. If
the condition is FALSE on the first evaluation, the statement block does
not execute.

DO WHILE condition

statementblock
LOOP
Parameter] Description
condition The condition you are testing
statementblock The block of statements you want to repeat

Using as LOOP UNTIL

Description

Syntax

LOOP...UNTIL executes a block of statements at least once and continues
until the specified condition is TRUE.

DO
statementblock
LOOP UNTIL condition

Parameter | Description
statementblock The block of statements you want to repeat
condition The condition you are testing

71

DO...LOOP

Using as LOOP WHILE

Description

Syntax

LOOP... WHILE executes a block of statements at least once and continues
while the specified condition is TRUE. The loop ends when the condition
becomes FALSE.

DO
statementblock
LOOP WHILE condition

Parameter | Description
statementblock The block of statements you want to repeat
condition The condition you are testing

When to use the different forms

Examples

72

Use DO WHILE or DO UNTIL when you want to execute a block of
statements only if a condition is TRUE (for WHILE) or FALSE (for
UNTIL). DO WHILE and DO UNTIL test the condition before executing
the block of statements.

Use LOOP WHILE or LOOP UNTIL when you want to execute a block of
statements at least once. LOOP WHILE and LOOP UNTIL test the
condition after the block of statements has been executed.

The following DO UNTIL executes a block of Beep functions until A is
greater than 15.

integer A =1, B =1
DO UNTIL A > 15

Beep(A)
A= (A+1) *B
LOOP

The following DO WHILE executes a block of BEEP functions only while
A is less than or equal to 15.

integer A =1, B =1
DO WHILE A <= 15

Beep(A)
A= (A+1) *B
LOOP

Chapter 5 Statements

The following LOOP UNTIL executes a block of Beep functions and then
continues to execute the functions until A is greater than 15.
integer A =1, B =1

DO

Beep(A)

A= (A+1) *B
LOOP UNTIL A > 15

The following LOOP WHILE executes a block of Beep functions while A
is less than or equal to 15.
integer A =1, B =1

DO

Beep(A)

A= (A+1) *B
LOOP WHILE A <= 15

73

EXIT

EXIT

Use the EXIT statement in a DO...LOOP or a FOR...NEXT control
structure to pass control out of the current loop. EXIT takes no parameters.

Using in DO...LOOP

Example

An EXIT statement in a DO...LOOP control structure causes control to
pass to the statement following the LOOP statement. In a nested
DO...LOOP structure, an EXIT statement passes control out of the current
DO...LOOP structure.

The following EXIT statement causes the loop to terminate if an element
in the Nbr array equals 0.

int Nbr[10]
int Count =1
// Assume values get assigned to Nbr array...

DO WHILE Count < 11
IF Nbr[Count] = 0 THEN EXIT
Count = Count + 1

LOOP

MessageBox("Hi", "Count is now " + String(Count))

Using in FOR...NEXT

Example

74

An EXIT statement in a FOR...NEXT control structure causes control to
pass to the statement following the NEXT statement.

The following EXIT statement causes the loop to terminate if an element
in the Nbr array equals 0.

int Nbr[10]
int Count
// Assume values get assigned to Nbr array...

FOR Count = 1 to 10
IF Nbr[Count] = 0 THEN EXIT
NEXT

MessageBox("Hi", "Count is now " + String(Count))

Chapter 5 Statements

FOR...NEXT

Description

Syntax

Usage

The FOR...NEXT control structure is a numerical iteration. Use
FOR...NEXT to execute one or more statements a specified number of
times.

FOR varname = start TO end {STEP increment}

statementblock

NEXT

Parameter Description

varname The name of the iteration counter variable. It can be
any numerical type (integer, double, real, long, or
decimal), but integers provide the fastest performance.

start Starting value of varname.

end Ending value of varname.

increment (Optional) The increment value. Increment must be a
constant and the same data type as varname. If you
enter an increment, STEP is required. +1 is the default
increment.

statementblock The block of statements you want to repeat.

For a positive increment, end must be greater than start. For a negative
increment, end must be less than start.

When increment is positive and start is greater than end, statementblock
does not execute. When increment is negative and start is less than end,
statementblock does not execute.

You can nest FOR...NEXT statements. You must have a NEXT for each
FOR.

A variable as the step increment

If you need to use a variable for the step increment, you can use one of
the DO...LOOP constructions and increment the counter yourself within
the loop.

75

FOR...NEXT

Examples

76

These statements add 10 to A as long as n is >=5 and <=25.

FOR n = 5 to 25
A = A+10
NEXT

These statements add 10 to A and increment n by 5 as long as
nis >= 5 and <=25.

FOR N = 5 TO 25 STEP 5
A = A+10
NEXT

These statements contain two lines that will never execute because
increment is negative and start is less than end.

FOR Count = 1 TO 100 STEP -1
IF Count < 1 THEN EXIT // These 2 lines
Box[Count] = 10 // will never execute.
NEXT

These are nested FOR...NEXT statements.

Int Matrix[100,50,200]
FOR i =1 to 100
FOR j = 1 to 50
FOR k = 1 to 200
Matrix[i,j,k]1=1
NEXT
NEXT
NEXT

Chapter 5 Statements

GOTO

Description The GOTO statement transfers control from one statement in a script to
another statement that is labeled.

Syntax GOTO label
Parameter Description
label The label associated with the statement to which you
want to transfer control. A label is an identifier
followed by a colon (such as OK:). Do not use the
colon with a label in the GOTO statement.
Examples The following GOTO statement skips over the Taxable=FALSE line.

Goto NextStep

Taxable=FALSE //This statement will never
//execute.

NextStep:

Rate=Count/Count4

The following statement transfers control to the statement associated with
the label OK.

GOTO OK

OK:

77

HALT and RETURN

HALT and RETURN

Using HALT

Description

Syntax

Examples

Using RETURN

Description

78

Use the HALT statement without associated keywords to terminate the
application immediately. Use the RETURN statement to stop the execution
of a script or function immediately.

When PowerBuilder encounters HALT without the keyword CLOSE, it
immediately terminates the application.

When PowerBuilder encounters HALT with the keyword CLOSE, it
immediately executes the script for the Close event for the application and
then terminates the application. If there is no script for the Close event at
the application level, PowerBuilder immediately terminates the
application.

HALT {CLOSE}

In the following example, the script stops the application if the user enters
a password in the SingleLineEdit named sle_password that does not match
the value stored in a string named CorrectPassword.

IF sle_password.Text <> CorrectPassword THEN HALT

The following statement executes the script for the close event for the
application before it terminates the application if the user enters a
password in the sle_password that does not match the value stored in the
string CorrectPassword.

IF sle_password.Text <> CorrectPassword &
THEN HALT CLOSE

When PowerBuilder encounters RETURN in a script, it terminates
execution of that script immediately and waits for the next user action.
When PowerBuilder encounters RETURN in a function, RETURN
transfers (returns) control to the point at which the function was called.

Chapter 5 Statements

Syntax

Examples

RETURN { expression }

Parameter Description

expression In a function, any value (or expression) you want the
function to return. The return value must be the data
type specified as the return type in the function. Do
not specify an expression when you use RETURN in a
script.

This script causes the system to beep once; the second beep statement will
not execute.
Beep(1)

RETURN
Beep(l) // This statement will not execute.

These statements in a user-defined function return the result of dividing
Argl by Arg2 if Arg2 is not equal to 0; they return -1 if Arg2 is equal to 0.

IF Arg2 <> 0 THEN
RETURN Argl/Arg2
ELSE
RETURN -1
END IF

79

IF...THEN

IF..THEN

Use the IF...THEN control structure to cause the script to perform a
specified action if a stated condition is true. IF... THEN has a single-line
format and a multiline format.

Using the single-line format

Syntax IF condition THEN action1 {ELSE action2}
Parameter Description
condition The condition you want to test.
actionl The action you want performed if the condition is

TRUE. The action must be a single statement on the
same line as the rest of the IF statement.

action2 (Optional) The action you want performed if the
condition is FALSE. The action must be a single
statement on the same line as the rest of the IF
statement.

You can use continuation characters to place the single-line format on
more than one physical line in the script.

Examples The following single-line IF... THEN statement opens window w_first if
Num = 1; otherwise, w_rest is opened.

IF Num = 1 THEN Open(w_first) ELSE Open(w_rest)
The following single-line IF... THEN statement displays a message if the
value in the SingleLineEdit sle_State is TX. It uses the continuation

character to continue the single-line statement across two physical lines in
the script.

IF sle_State.text="TX" THEN &
MessageBox("Hello", "Tex")

80

Chapter 5 Statements

Using the multiline format

Syntax

Examples

IF condition1 THEN

action1
{ ELSEIF condition2 THEN
action2
.
{ ELSE
action3}
END IF
Parameter Description
conditionl The first condition you want to test.
actionl The action you want performed if conditionl is
TRUE. The action can be a statement or multiple
statements that are separated by semicolons or placed
on separate lines. At least one action is required.
condition2 (Optional) The condition you want to test if
condition] is FALSE. You can have multiple
ELSEIF...THEN statements in an IF...THEN control
structure.
action2 The action you want performed if condition?2 is
TRUE. The action can be a statement or multiple
statements that are separated by semicolons or placed
on separate lines.
action3 (Optional) The action you want performed if none of
the preceding conditions is true. The action can be a
statement or multiple statements that are separated by
semicolons or placed on separate lines.

You must end a multiline IF... THEN control structure with END IF (which
is two words).

The following multiline IF... THEN compares the horizontal positions of
windows w_first and w_second. If w_first is to the right of w_second,
w_first is moved to the left side of the screen.

IF w_first.X > w_second.X THEN
w_first.X = 0
END IF
The following multiline IF... THEN causes the application to:
¢ Beep twice if X equals Y

81

IF...THEN

82

Display the Parts listbox and highlight item 5 if X equals Z
Display the Choose listbox if X is blank

Hide the Empty button and display the Full button if none of the above
conditions is TRUE

IF X=Y THEN
Beep(2)
ELSEIF X=Z THEN
Show (lb_parts); lb_parts.SetState(5,TRUE)
ELSEIF X=" " THEN
show (1lb_choose)
ELSE
Hide(cb_empty)
Show(cb_full)
END IF

CHAPTER 6
Functions

About this chapter Much of the power of the PowerScript language resides in the built-in
PowerScript functions that you can use in expressions and assignment
statements. You can also extend PowerBuilder by calling external
functions. This chapter describes how to use the built-in functions and how
to declare external functions that reside in dynamic link libraries (DLLs).

Contents Topic Page
Calling functions 84
Types of built-in functions 86
Writing user-defined functions 88
External functions 89

83

Calling functions

Calling functions

Examples

To call a function, you specify the function name, followed by an open
parenthesis, zero or more arguments, and a close parenthesis.

function({argument1, argument2, ...})

Most PowerScript functions require a specific number of arguments.
However, some take optional arguments. The arguments can be literals,
variables, other functions, or expressions.

These examples illustrate functions that take different types of arguments.

Now() // Requires no

// arguments
Beep(3) // Requires one

// numeric argument
Round(123.456789, 4) // Requires 2

// numeric arguments

Clipboard("PowerBuilder") // Has one optional
// string argument

Case insensitivity

84

Function names are not case sensitive. For example, the following
statements are equivalent:
Clipboard("PowerBuilder")

clipboard("PowerBuilder")
CLIPBOARD ("PowerBuilder")

The PowerBuilder documentation shows built-in functions with uppercase
letters for the first character of each word in the function name, such as
MessageBox.

Naming your own functions
You can use any valid identifier (1 to 40 characters) when you name
PowerScript functions that you create.

& For information on user-defined functions, see the User's Guide.

Chapter 6 Functions

Return values

Examples

All built-in PowerScript functions return a value. You can use the return
value or ignore it.

To use the return value, assign it to a variable of the appropriate data type
or call the function itself wherever you can use a value of that data type.

The built-in Asc function takes a string as an argument and returns the
ASCII value of the string's first character.

string S1 = "Carton"

int Test

Test=32+Asc(S1) // Test now contains the value

// 99 (the ASCII value of "C"
// is 67).

The SelectRow function expects a row number as the first argument. The
return value of the GetRow function supplies the row number.

dw_l.SelectRow(dw_1.GetRow(), TRUE)

To ignore a return value, call the function as a single statement.

Beep(4) // This returns a value, but it is
// rarely needed.

User-defined functions and external functions may or may not return a
value.

How PowerBuilder looks for functions

When PowerBuilder executes a script and finds an unqualified reference to
a function, it searches for the function in the following order:

1 A global external function

2 A global function

3 An object function and local external function
4 A system function

As soon as PowerBuilder finds a function with the specified name, it calls
the function. If you have a global and an object function with the same
name, you can call the object function by qualifying it with the object name
or the pronoun This. If a function has the same name as a system function,
the system function becomes inaccessible.

85

Types of built-in functions

Types of built-in functions

The built-in PowerScript functions include object functions, which act on a
instance of a particular object, and system functions, whose effects are
independent of any object.

You can list all the functions in the Object browser.

% To list the functions:
1 Do one of the following:

¢ Open the PowerScript painter and click the Browse icon or select
Edit>Browse Objects from the menu bar.

¢ Open the Library painter and select Utilities> Browse Objects.
The Object browser opens.
2 Select System as the Object Type and Functions as the Paste Category.

3 In the Object listbox, select the object for which you want the list of
functions.

PowerBuilder lists all the functions for the selected object.

Viewing the system functions
To see the list of system functions, choose systemfunctions in the
Objects listbox.

{ string s) returns int
eep (int count) returns int

86

Chapter 6 Functions

&~ For more
information

For

See

A list of PowerScript functions,
organized by object type

A list of all functions with
descriptions of their actions and
arguments

Objects and Controls, which has a
category for each object type and lists
the functions that act on that object

Function Reference, which lists the
functions alphabetically

87

Writing user-defined functions

Writing user-defined functions

88

When you need to code the same process in several scripts, in the same or
different applications, you can make the code reusable by defining a user-
defined function. A user-defined function is a collection of PowerScript
statements that perform some processing. You can save user-defined
functions in a separate library, so that any PowerBuilder application can
use the functions.

& For information on writing user-defined functions in the Function
painter, see the User's Guide.

Chapter 6 Functions

External functions

Two types

External functions are functions that are written in languages other than
PowerScript and stored in dynamic link libraries (DLLs). You can use
external functions that are written in any language that supports the Pascal
calling sequence.

Before you can use an external function in a script, you must declare it.
You can declare two types of external functions:

¢ Global external functions, which are available anywhere in the
application

¢ Local external functions, which are defined for a particular type of
window, menu, user object, or user-defined function. These functions
are part of the object's definition and can always be used in scripts for
the object itself. You can also choose to make these functions
accessible to other scripts.

Syntax for declaring external functions

Use the following syntax to declare an external function.

{ Access } FUNCTION ReturnDataType FunctionName
({REF} {DataType1 Arg1, ..., DataTypeN ArgN})
LIBRARY LibName

You can also declare external subroutines, which are the same as external
functions, except that they don't return a value.

{ Access } SUBROUTINE SubroutineName
({REF} {DataType1 Arg1, ..., DataTypeN ArgN})
LIBRARY LibName

Parameter Description

Access (Local external functions only). You can optionally
specify Public, Protected, or Private to specify the
access level of a local external function. The default is
Public.

&> For more information, see "Specifying access of
local functions" below.

ReturnDataType The data type of the value returned by the function.

89

External functions

Parameter

Description

FunctionName or
SubroutineName

DataTypel through
DataTypeN

Argl through ArgN

The name of a function or subroutine that resides in a
DLL.

The data types of the arguments (if any) specified in
Argl to ArgN.

The names of the arguments in the function or
subroutine.

& For more information on passing arguments, see
Building Applications.

LibName A string containing the name of the DLL in which the
function or subroutine is stored. Microsoft Windows'
DLLs usually have the extension .DLL or .EXE.
Enclose the library name in quotation marks; do not
include the DOS path. The library must be availabie
to the application at execution time (see next).

Specifying access When declaring a local external function, you can specify its access
of local functions level—that is, you can specify which scripts have access to the function.

Access You can use the local external function in

Public Any script in the application.

Private Scripts for events in the object for which the function is
declared. You cannot use the function in descendants of
the object.

Protected Scripts for the object for which the function is declared
and its descendants.

Access with local external functions works the same as with instance

variables.

&~ For more information about access, see the description of instance

variables on page 34.

Calling local You use dot notation to call local external functions.

external functions

object.function(arguments)

For example, if you declared the local external function Reorg for the
window w_emp, call the function like this.

w_emp.Reorg(

90

Chapter 6 Functions

Availability of DLL
during execution

Creating your own
functions

To be available to the PowerBuilder application running under Windows,
the DLL must be in one of the following directories:

L

*
*
¢

The current directory

The Windows directory

The Windows System subdirectory
Directories on the DOS path

When you create your own functions for use as external functions in
PowerBuilder external function calls, you must create the functions using
the FAR PASCAL declaration and link them in a DLL.

& For more information about using external functions, see Building
Applications.

91

CHAPTER 7

SQL Statements

About this chapter This chapter documents the embedded SQL and dynamic SQL statements
that you can use in scripts. The first section describes using variables in
SQL statements and error handling. Then the embedded SQL statements
are discussed alphabetically. The last section discusses dynamic SQL.

Contents Topic Page
Using SQL in scripts 94
CLOSE Cursor 99
CLOSE Procedure 100
COMMIT 101
CONNECT 102
DECLARE Cursor 103
DECLARE Procedure 104
DELETE 106
DELETE Where Current of Cursor 107
DISCONNECT 108
EXECUTE 109
FETCH 110
INSERT 111
OPEN Cursor 112
ROLLBACK_ 113
SELECT 114
SELECTBLOB 115
UPDATE 116
UPDATEBLOB 117
UPDATE Where Current of Cursor 118
Using dynamic SQL 119

93

Using SQL in scripts

Using SQL in scripts

PowerScript supports standard embedded SQL statements and dynamic
SQL statements in scripts.

In general, PowerScript supports all DBMS-specific clauses and reserved
words that occur in the supported SQL statements. For example,
PowerBuilder supports DBMS-specific built-in functions within a SELECT
command.

& For information about embedded SQL, see online Help.

Referencing PowerScript variables in scripts

Wherever constants can be referenced in SQL statements, PowerScript
variables preceded by a colon (:) can be substituted. Any valid PowerScript
variable can be used.

Examples This INSERT statement uses a constant value.

INSERT INTO EMPLOYEE (SALARY)
VALUES (18900) ;

The same statement using a PowerScript variable to reference the constant
might look like this.
int Sal_var
Sal_var = 18900
INSERT INTO EMPLOYEE (SALARY)
VALUES (:Sal_var) ;

Using indicator variables

PowerBuilder supports indicator variables, which are used to identify
NULL values or conversion errors after a database retrieval. Indicator
variables are integers that are specified in the HostVariableList of a
FETCH or SELECT statement.

Each indicator variable is separated from the variable it is indicating by a
space (but no comma). For example, the following statement is a
HostVariableList without indicator variables.

:Name, :Address, :City

94

Chapter 7 SQL Statements

Examples

The same HostVariableList with indicator variables might look like this.

:tName :IndVarl, :Address :IndVar2, :City :IndVar3

Indicator variables have one of these values.

Numerical
value Meaning
0 Valid, non-NULL value
-1 NULL value
-2 Conversion error

Error reporting
Not all DBMSs return a conversion error when the data type of a
column does not match the data type of the associated variable.

The following command uses the indicator variable IndVar2 to see if
Address contains a NULL value.

if Indvar2 = -1 then...

You could also use the PowerScript IsNull function to accomplish the same
result without using indicator variables.

if IsNull(Address) then ...

This command uses the indicator variable IndVar3 to set City to NULL.
Indvar3 = -1

You could also use the PowerScript SetNull function to accomplish the
same result without using indicator variables.

SetNull(City)

&>~ For information about the SetNull function, see the Function
Reference.

95

Using SQL in scripts

Error handling in scripts

The scripts shown in the SQL examples above do not include error
handling, but it is good practice to test the success and failure codes (the
SQLCode attribute) in the transaction object after every statement. The
codes are:

Value Meaning

0 Success.

100 The command succeeded but did not retrieve or modify any rows
(which may or may not be acceptable).

-1 Error; the statement failed. Use SQLErrText or SQLDBCode to
obtain the details.

About SQLErrText The string SQLErrText in the transaction object contains the database
and SQLDBCode vendor—supplied error message. The long named SQLDBCode in the
transaction object contains the database vendor—supplied status code.

Example IF SQLCA.SQLCode = -1 THEN

MessageBox("SQL error", SQLCA.SQLErrText)
END IF

Painting standard SQL

You can paint the following SQL statements in scripts and functions:

¢ Declarations of SQL cursors and stored procedures

¢ Cursor FETCH, UPDATE, and DELETE statements

¢ Noncursor SELECT, INSERT, UPDATE, and DELETE statements

Declaring cursors and procedures

You can declare cursors and stored procedures at the scope of global,
instance, shared, or local variables.

& For more information about scope, see Chapter 3, "Declarations."

96

Chapter 7 SQL Statements

< To declare a global, instance, or shared cursor or procedure:

Select Declare> Global Variables, Declare> Instance Variables, or
Declare>Shared Variables in the Window, User Object, Menu, or
PowerScript painter.

The window that displays contains icons at the right for declaring a
cursor or procedure. The Declare Cursor painter is virtually the same
as the View painter, which is described in the User's Guide.

2 Double-click the icon and paint the statement. Supply all the required
information. You can look at the SQL statement as it is being built by
selecting Show SQL Syntax from the Options menu.

% To declare a local cursor or procedure:
1 Open the PowerScript or Function painter.

2 Click the Paste SQL button in the PainterBar, described next.

Pasting SQL statements into scripts and functions

You can paint standard embedded SQL statements in the PowerScript
painter, the Function painter, and the Database Administration painter.

% To paint an embedded SQL statement:
I Open the PowerScript, Function, or Database Administration painter.

2 Click the Paste SQL button in the PainterBar or select Edit> Paste
SQL from the menu bar.

97

Using SQL in scripts

A window displays showing the SQL statement types that you can
paint. This is the window for the PowerScript painter.

3 Select a statement type.
A window displays.

4 Create the statement by pasting and entering text, operators, and
values. You can look at the SQL statement as it is being built by
selecting Show SQL Syntax from the Options menu.

Supported SQL statements

98

In general, all DBMS-specific features are supported in PowerScript, as
long as they occur within a PowerScript-supported SOU statement. For
example, PowerScript supports DBMS-specific built-in functions within a
SELECT command.

The rest of this chapter describes the SQL statements that PowerScript
supports. The statements are listed in alphabetical order.

Chapter 7 SQL Statements

CLOSE Cursor

Syntax

Description

Example

CLOSE CursorName ;

Parameter | Description

CursorName ‘ The cursor you want to close

Closes the SQL cursor CursorName; ends processing of CursorName. This
statement must be preceded by an OPEN statement for the same cursor.
The USING TransactionObject clause is not allowed with CLOSE; the
transaction object was specified in the statement that declared the cursor.

CLOSE often appears in the script that is executed when the SQL code
after a fetch equals 100 (not found).

Tip
It is good practice to test the success/failure code after executing a
CLOSE statement.

This statement closes the Emp_cursor cursor.

CLOSE Emp_cursor ;

99

CLOSE Procedure

CLOSE Procedure

Syntax CLOSE ProcedureName ;
Parameter | Description
ProcedureName | The stored procedure you want to close

DBMS-specific
Not all DBMSs support stored procedures.

Description Closes the SQL procedure ProcedureName; ends processing of
ProcedureName. This statement must be preceded by an EXECUTE
statement for the same procedure. The USING TransactionObject clause is
not allowed with CLOSE; the transaction object was specified in the

statement that declared the procedure.

You only need to use CLOSE to close procedures that return result sets.
PowerBuilder automatically closes procedures that don't return result sets
(and sets the return code to 100).

CLOSE often appears in the script that is executed when the SQL code
after a fetch equals 100 (not found).

Tip
It is good practice to test the success/failure code after executing a
CLOSE statement.

Example This statement closes the stored procedure named Emp_proc.

CLOSE Emp_proc ;

100

Chapter 7 SQL Statements

coMmmMmIT

Syntax

Description

Examples

COMMIT {USING TransactionObject; ;

Parameter Description

TransactionObject The name of the transaction object for which you want
to permanently update all database operations since
the previous commit, rollback, or connect. This clause
is required only for transaction objects other than the
default (SQLCA).

Permanently updates all database operations since the previous commit,
rollback, or connect for the specified transaction object. COMMIT does not
cause a disconnect, but it does close all open cursors or procedures. (But
note that the DISCONNECT statement in PowerBuilder does issue a
COMMIT.)

Tip
It is good practice to test the success/failure code after executing a
COMMIT statement.

This statement commits all operations for the database specified in the
default transaction object.

COMMIT ;

This statement commits all operations for the database specified in the
transaction object named Emp_tran.

COMMIT USING Emp_tran ;

101

CONNECT

CONNECT

Syntax

Description

Examples

102

CONNECT {USING TransactionObject} ;

Parameter Description

TransactionObject The name of the transaction object containing the
required connection information for the database to
which you want to connect. This clause is required
only for transaction objects other than the default
(SQLCA).

Connects to a specified database. This statement must be executed before
any actions (such as insert, update, or delete) can be processed using the
default transaction object or the specified transaction object.

Tip
It is good practice to test the success/failure code after executing a
CONNECT statement.

This statement connects to the database specified in the default transaction
object.

CONNECT ;

This statement connects to the database specified in the transaction object
named Emp_tran.

CONNECT USING Emp_tran ;

Chapter 7 SQL Statements

DECLARE Cursor

Syntax

Description

Example

DECLARE CursorName CURSOR FOR SelectStatement
{USING TransactionObject; ;

Parameter Description

CursorName Any valid PowerBuilder name.

SelectStatement Any valid SELECT statement.

TransactionObject The name of the transaction object for which you want
to declare the cursor. This clause is required only for
transaction objects other than the default (SQLCA).

Declares a cursor for the specified transaction object. DECLARE Cursor is
a nonexecutable command and is analogous to declaring a variable.

To declare a global, shared, or instance cursor, select Declare> Global
Variables, Declare> Instance Variables, or Declare> Shared Variables in
the Window, User Object, Menu, or PowerScript painter. To declare a local
cursor, click the Paint SQL button in the PainterBar.

& For information about global, instance, shared, and local scope, see
Chapter 3, "Declarations."

This statement declares the cursor called Emp_cur for the database
specified in the default transaction object. It also references the Sal_var
variable, which must be set to an appropriate value before you execute the
OPEN Emp_cur command.
DECLARE Emp cur CURSOR FOR
SELECT employee.emp_number, employee.emp name

FROM employee
WHERE employee.emp_salary > :Sal var ;

103

DECLARE Procedure

DECLARE Procedure

Syntax DECLARE ProcedureName PROCEDURE FOR
StoredProcedureName
@ Param1=Value1, @ Param2=Value2,...
{USING TransactionObject} ;

Parameter Description

ProcedureName Any valid PowerBuilder name.
StoredProcedureName Any stored procedure in the database.
@Paramn=Valuen The name of a parameter (argument) defined in the

stored procedure and a valid PowerBuilder
expression. N represents the number of the
parameter and value.

TransactionObject The name of the transaction object for which you
want to declare the procedure. This clause is
required only for transaction objects other than the
default (SQLCA).

DBMS-specific
Not all DBMSs support stored procedures.

Description Declares a procedure for the specified transaction object. DECLARE
Procedure is a nonexecutable command. It is analogous to declaring a
variable.

Using SQL Server
In SQL Server, you can use the optional reserved word OUT to indicate
an output parameter:

@Param=Value OUT

To declare a global, shared or instance procedure, select Declare>Global
Variables, Declare> Instance Variables, or Declare> Shared Variables in
the Window, User Object, Menu, or PowerScript painter. To declare a local
procedure, click the Paint SQL button in the PainterBar.

& For information about global, instance, shared, and local scope, see
Chapter 3, "Declarations."

104

Chapter 7 SQL Statements

Example This statement declares the procedure Emp_proc for the database specified
in the default transaction object. It references the Emp_name_var and
Emp_sal_var variables, which must be set to appropriate values before you
execute the EXECUTE Emp_proc command.

DECLARE Emp_proc procedure for GetName
@emp_name = :Emp_ name var,
@emp_salary = :Emp_sal var ;

105

DELETE

DELETE

Syntax

Description

Example

106

DELETE FROM TableName WHERE Criteria
{USING TransactionObject} ;

Parameter Description

TableName The name of the table from which you want to
delete rows.

Criteria Criteria that specify which rows to delete.

TransactionObject The name of the transaction object that identifies

the database containing the table. This clause is
required only for transaction objects other than the
default (SQLCA).

Deletes the rows in TableName specified by Criteria.

Tip
It is good practice to test the success/failure code after executing a
DELETE statement.

This statement deletes rows from the Employee table in the database
specified in the default transaction object where Emp_num is less
than 100.

DELETE FROM Employee WHERE Emp num < 100 ;

These statements delete rows from the Employee table in the database
named in the transaction object named Emp_tran where Emp_num is equal
to the value entered in the SingleLineEdit sle_number.

int Emp_num

Emp_num = Integer(sle_number.Text)

DELETE FROM Employee
WHERE Employee.Emp_num = :Emp_num ;

The integer Emp_num requires a colon in front of it to indicate it is a
variable when it is used in a WHERE clause.

Chapter 7 SQL Statements

DELETE Where Current of Cursor

Syntax

Description

Example

DELETE FROM TableName WHERE CURRENT OF CursorName ;

Parameter | Description
TableName The name of the table from which you want to delete a
oW
CursorName The name of the cursor in which the table was
specified
DBMS-specific

Not all DBMSs support DELETE Where Current of Cursor.

Deletes the row in which the cursor is positioned. The USING
TransactionObject clause is not allowed with this form of DELETE Where
Current of Cursor; the transaction object was specified in the statement
that declared the cursor.

Tip
It is good practice to test the success/failure code after executing a
DELETE statement.

This statement deletes from the Employee table the row in which the
cursor named Emp_cur is positioned.

DELETE FROM Employee WHERE current of Emp_ curs ;

107

DISCONNECT

DISCONNECT

Syntax

Description

Example

108

DISCONNECT {USING TransactionObject} ;

Parameter Description

TransactionObject The name of the transaction object that identifies the
database you want to disconnect from and in which
you want to permanently update all database
operations since the previous commit, rollback, or
connect. This clause is required only for transaction
objects other than the default (SQLCA).

Executes a COMMIT for the specified transaction object, then disconnects
from the specified database.

Tip
It is good practice to test the success/failure code after executing a
DISCONNECT statement.

This statement disconnects from the database specified in the default
transaction object.

DISCONNECT ;

This statement disconnects from the database specified in the transaction
object named Emp_tran.

DISCONNECT USING Emp_tran ;

Chapter 7 SQL Statements

EXECUTE

Syntax EXECUTE ProcedureName ;
Parameter Description
ProcedureName The name assigned in the DECLARE statement of the

stored procedure you want to execute. The procedure
must have been declared previously. ProcedureName
is not necessarily the name of the procedure stored in
the database.

Description Executes the previously declared procedure identified by ProcedureName.
The USING TransactionObject clause is not allowed with EXECUTE; the
transaction object was specified in the statement that declared the
procedure.

Tip
It is good practice to test the success/failure code after executing an
EXECUTE statement.

Example This statement executes the stored procedure Emp_proc.
EXECUTE Emp proc ;

109

FETCH

FETCH

Syntax

Description

110

FETCH Cursor | Procedure INTO HostVariableList ;

Parameter | Description

Cursor or Procedure The name of the cursor or procedure from which you
want to fetch a row

HostVariableList PowerScript variables into which data values will be
retrieved

Fetches the row after the row on which Cursor | Procedure is positioned.
The USING TransactionObject clause is not allowed with FETCH; the
transaction object was specified in the statement that declared the cursor or
procedure.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR,
or FETCH LAST.

Tip
It is good practice to test the success/failure code after executing a
FETCH statement.

This statement fetch € H s
declaration of the cursor named Emp_cur and puts it into Emp_num and
Emp_name.

int Emp_num

string Emp_name

FETCH Emp_cur INTO :Emp num, :Emp_name ;

If sle_emp_num and sle_emp_name are SingleLineEdits, these statements
fetch from the cursor named Emp_cur, store the data in Emp_num and
sle_emp_name, and then convert Emp_num from an integer to a string and
put it in sle_emp_num.

int Emp_num

FETCH Emp_cur into :emp_num, :sle_emp_ name.Text ;
sle_emp num.Text = string(Emp_num)

Chapter 7 SQL Statements

INSERT

Syntax INSERT RestOfinsertStatement
{USING TransactionObject} ;

Parameter Description

RestOfInsertStatement The rest of the INSERT statement (the INTO clause,
list of columns and values or source).

TransactionObject The name of the transaction object that identifies
the database containing the table. This clause is
required only for transaction objects other than the
default (SQLCA).

Description Inserts one or more new rows into the table specified in
RestOfInsertStatement.

Tip
It is good practice to test the success/failure code after executing an
INSERT statement.

Examples These statements insert a row with the values in EmpNbr and EmpName
into the Emp_nbr and Emp_name columns of the Employee table
identified in the default transaction object.

int EmpNbr

string EmpName

INSERT INTO Employee (employee.Emp_ nbr,
employee.Emp name)
VALUES (:EmpNbr, :EmpName) ;

These statements insert a row with the values entered in the
SingleLineEdits sle_number and sle_name into the Emp_nbr and
Emp_name columns of the Employee table in the transaction object named
Emp_tran.
int EmpNbr
EmpNbr = Integer(sle_number.Text)
INSERT INTO Employee (employee.Emp_nbr,
employee.Emp_name)
VALUES (:EmpNbr, :sle_name.Text) USING Emp_tran ;

111

OPEN Cursor

OPEN Cursor

Syntax

Description

Example

112

OPEN CursorName ;

Parameter | Description

CursorName l The name of the cursor you want to open

Causes the SELECT specified when the cursor was declared to be
executed. The USING TransactionObject clause is not allowed with OPEN;
the transaction object was specified in the statement that declared the
cursor.

Tip
It is good practice to test the success/failure code after executing an
OPEN statement.

This statement opens the cursor Emp_curs.

OPEN Emp_curs ;

Chapter 7 SQL Statements

ROLLBACK

Syntax

Description

Examples

ROLLBACK {USING TransactionObject} ;

Parameter Description

TransactionObject The name of the transaction object that identifies the
database in which you want to cancel all operations
since the last commit, rollback, or connect. This
clause is required only for transaction objects other
than the default (SQLCA).

Cancels all database operations in the specified database since the last
COMMIT, ROLLBACK, or CONNECT. ROLLBACK does not cause a
disconnect, but it does close all open cursors and procedures.

Tip
It is good practice to test the success/failure code after executing a
ROLLBACK statement.

This statement cancels all database operations in the database specified in
the default transaction object.

ROLLBACK ;

This statement cancels all database operations in the database specified in
the transaction object named Emp_tran.

ROLLBACK USING emp_tran ;

113

SELECT

SELECT

Syntax

Description

Example

114

SELECT RestOfSelectStatement
{USING TransactionObject} ;

Parameter Description

RestOfSelectStatement The rest of the SELECT statement (the column list
INTO, FROM, WHERE, and other clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

Selects a row in the tables specified in RestOfSelectStatement.

An error occurs if the SELECT statement returns more than one row.

Tip
It is good practice to test the success/failure code after executing a
SELECT statement.

The following statements select data in the Emp_ILLName and Emp_FName
columns of a row in the Employee table and put the data into the
SingleLineEdits sle_LName and sle_FName. The transaction object
Emp_tran is used.

int Emp_num
Emp_num = Integer(sle_Emp_Num.Text)

SELECT employee.Emp_ LName, employee.Emp_ FName
INTO :sle_LName.text, :sle_FName.text
FROM Employee
WHERE Employee.Emp nbr = :Emp_ num
USING Emp_tran ;

if Emp_tran.SQLCode = 100 then
MessageBox ("Employee Inquiry"”, &
"Employee Not Found")
elseif Emp tran.SQLCode > 0 then
MessageBox("Database Error", &
Emp_tran.SQLErrText, Exclamation!)
End If

Chapter 7 SQL Statements

SELECTBLOB

Syntax

Description

Example

SELECTBLOB RestOfSelectStatement
{USING TransactionObject} ;

Parameter Description

RestOfSelectStatement The rest of the SELECT statement (the INTO, FROM,
and WHERE clauses).

TransactionObject The name of the transaction object that identifies the

database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

You can an include indicator variable in the host variable list (target
parameters) in the INTO clause to check for an empty blob (a blob of 0
length) and conversion errors.

Selects a single blob column in a row in the table specified in
RestOfSelectStatement.

An error occurs if the SELECTBLOB statement returns more than one
row.

Tip
It is good practice to test the success/failure code after executing a
SELECTBLOB statement.

The following statements select the blob column Emp_pic from a row in
the Employee table and set the picture p_1 to the bitmap in Emp_id_pic.
The transaction object Emp_tran is used.
Blob Emp_id_pic
SELECTBLOB Emp_pic
INTO :Emp_id_pic
FROM Employee
WHERE Employee.Emp Num = 100
USING Emp_tran ;
p_l.SetPicture(Emp_id pic)

The blob Emp_id_pic requires a colon to indicate it is a host (PowerScript)
variable when you use it in the INTO clause of the SELECTBLOB
statement.

115

UPDATE

UPDATE

Syntax UPDATE TableName RestOfUpdateStatement
{USING TransactionObject} ;

Parameter Description

TableName The name of the table in which you want to
update rows.

RestOfUpdateStatement The rest of the UPDATE statement (the SET and
WHERE clauses).

TransactionObject The name of the transaction object that identifies

the database containing the table. This clause is
required only for transaction objects other than

the default (SQLCA).
Description Updates the rows specified in RestOfUpdateStatement.
Tip
It is good practice to test the success/failure code after executing a
UPDATE statement.
Example These statements update rows from the Employee table in the database

specified in the transaction object named Emp_tran where Emp_num is
equal to the value entered in the SingleLineEdit sle_Number.
int Emp_num
Emp_num=Integer(sle_Number.Text)
UPDATE Employee
SET emp_name = :sle Name.Text
WHERE Employee.emp_num = :Emp num
USING Emp_tran ;

The integer Emp_num and the SingleLineEdit sle_name require a colon to
indicate they are host (PowerScript) variables when you use them in an
UPDATE statement.

116

Chapter 7 SQL Statements

UPDATEBLOB

Syntax

Description

Example

UPDATEBLOB TableName
SET BlobColumn = BlobVariable
RestOfUpdateStatement {USING TransactionObject, ;

Parameter Description

TableName The name of the table you want to update.

BlobColumn The name of the column you want to update in
TableName. The data type of this column must be
blob.

BlobVariable A PowerScript variable of the data type blob.

RestOfUpdateStatement The rest of the UPDATE statement (the WHERE
clause).

TransactionObject The name of the transaction object that identifies
the database containing the table. This clause is
required only for transaction objects other than
the default (SQLCA).

Updates the rows in TableName in BlobColumn.

Tip

UPDATEBLOB statement.

It is good practice to test the success/failure code after executing a

These statements update the blob column emp_pic in the Employee table

where emp_num is 100.

int fh
blob Emp_id pic

fh = FileOpen("c:\emp_100.bmp", StreamMode!)

IF fh <> -1 THEN

FileRead(fh, emp_id_pic)

FileClose(fh)

UPDATEBLOB Employee SET emp_pic = :Emp_id pic
WHERE Emp num = 100
USING Emp_tran ;

END IF

The blob Emp_id_pic requires a colon to indicate it is a host (PowerScript)
variable in the UPDATEBLOB statement.

117

UPDATE Where Current of Cursor

UPDATE Where Current of Cursor

Syntax UPDATE TableName SetStatement
WHERE CURRENT OF CursorName ;
Parameter Description
TableName The name of the table in which you want to update the
row
SetStatement The word SET followed by a comma-separated list of
the form ColumnName = value
CursorName The name of the cursor in which the table is
referenced
Description Updates the row in which the cursor is positioned using the values in

SetStatement. The USING Transaction Object clause is not allowed with
UPDATE Where Current of Cursor; the transaction object was specified in
the statement that declared the cursor.

Example This statement updates the row in the Employee table in which the cursor
called Emp_curs is positioned.

UPDATE Employee
SET salary = 17800
WHERE CURRENT of Emp_curs ;

118

Chapter 7 SQL Statements

Using dynamic SQL

Four formats of
dynamic SQL

Database applications usually perform a specific activity, so you usually
know the complete SQL statement when you write and compile the script.
When PowerBuilder does not support the statement in embedded SQL (for
example, a DDL statement) or when the parameters or the format of the
statements are unknown at compile time, the application must build the
SQL statements at execution time. This is called dynamic SQL. The
parameters used in dynamic SQL statements can change each time the
program is executed.

Using WATCOM SQL

For information about using dynamic SQL with WATCOM SQL, see
WATCOM SOL.

PowerBuilder has four dynamic SQL formats. Each format handles one of
the following situations at compile time.

Format When used

Format 1 Non-result-set statements with no input parameters

Format 2 Non-result-set statements with input parameters

Format 3 Result-set statements in which the input parameters and result-
set columns are known at compile time

Format 4 Result set statements in which the input parameters, the result-
set columns, or both, are unknown at compile time

To handle these situations, use:
¢ The PowerBuilder dynamic SQL statements

¢ The dynamic versions of CLOSE, DECLARE, FETCH, OPEN, and
EXECUTE

¢ The PowerBuilder data types DynamicStagingArea and
DynamicDescriptionArea

The syntax for each situation follows, with examples.

119

Using dynamic SQL

About the examples

The examples assume that the default transaction object (SQLCA) has
been assigned valid values and that a successful CONNECT has been
executed. Although the examples do not show error checking, you
should check the SQLCode after each SQL statement.

PowerBuilder's dynamic SQL statements

The dynamic SQL statements are:

DESCRIBE DynamicStagingArea
INTO DynamicDescriptionArea ,

EXECUTE {IMMEDIATE} SQLStatement
{USING TransactionObject} ;

EXECUTE DynamicStagingArea
USING ParameterList ;

EXECUTE DYNAMIC Cursor | Procedure
USING ParameterList ;

OPEN DYNAMIC Cursor | Procedure
USING ParameterList ;

EXECUTE DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

OPEN DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

PREPARE DynamicStagingArea
FROM SQLStatement {USING TransactionObject} ;

About DynamicStagingArea

120

DynamicStagingArea is a PowerBuilder data type. PowerBuilder uses a
variable of this type to store information for use in subsequent statements.

The DynamicStagingArea is the only connection between the execution of
a statement and a transaction object and is used internally by
PowerBuilder; you cannot access information in the DynamicStagingArea.

Chapter 7 SQL Statements

PowerBuilder provides a global DynamicStagingArea variable named
SQLSA that you can use when you need a DynamicStagingArea variable.
If necessary, you can declare and create additional variables of this type.

After the EXECUTE statement is completed, SQLSA is no longer
referenced.

About DynamicDescriptionArea

DynamicDescriptionArea is a PowerBuilder data type. PowerBuilder uses a
variable of this type to store information about the input and output
parameters used in Format 4 of dynamic SQL.

PowerBuilder provides a global DynamicDescriptionArea named SQLDA
that you can use when you need a DynamicDescriptionArea variable. If
necessary, you can declare and create additional variables of this type.

& For more information about SQLDA, see "Format 4" on page 128.

121

Using dynamic SQL

Format 1
Use this format to execute a SQL statement that does not produce a result
set and does not require input parameters. You can use this format to
execute all forms of Data Definition Language (DDL).
Syntax EXECUTE IMMEDIATE SQLStatement
{USING TransactionObject} ;
Parameter Description
SQLStatement A string containing a valid SQL statement. The string
can be a string constant or a PowerBuilder variable
preceded by a colon (such as :mysql). The string must
be contained on one line and cannot contain
expressions.
TransactionObject The name of the transaction object that identifies the
database.
Examples This statement creates a database table named Employee. The statements

use the string Mysql to store the CREATE statement.

For SQL Server users
If you are connected to a SQL Server database, set AUTOCOMMIT to
TRUE before executing the CREATE.

string Mysql

Mysqgl = "CREATE TABLE Employee "&
+"(emp_id integer not null,"&
+"dept_id integer not null, "&
+"emp_fname char(10) not null, "&
+"emp_lname char(20) not null)"

EXECUTE IMMEDIATE :Mysql ;

This statement assumes a transaction object named My _trans exists and is
connected.

string Mysql
Mysqgl="INSERT INTO dept Values (1234, 'Purchasing')”
EXECUTE IMMEDIATE :Mysqgl USING My_trans ;

122

Chapter 7 SQL Statements

Format 2

Syntax

Description

Examples

Use this format to execute a SQL statement that does not produce a result
set but does require input parameters. You can use this format to execute
all forms of Data Definition Language (DDL).

PREPARE DynamicStagingArea FROM SQL Statement
{USING TransactionObject} ;

EXECUTE DynamicStagingArea
USING {ParameterList} ;

Parameter Description

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

SQLStatement A string containing a valid SQL statement. The

string can be a string constant or a PowerBuilder
variable preceded by a colon (such as :mysql). The
string must be contained on one line and cannot
contain expressions.

Enter a question mark (?) for each parameter in the
statement. Value substitution is positional;
reserved word substitution is not allowed.

TransactionObject The name of the transaction object that identifies
the database.

ParameterList A comma-separated list of PowerScript variables.
Note that PowerScript variables are preceded by a
colon (3).

To specify a NULL value, use the SetNull function.

These statements prepare a DELETE statement with one parameter in
SQLSA, then execute it using the value of the PowerScript variable
Emp_id_var.
INT Emp_id var = 56
PREPARE SQLSA
FROM "DELETE FROM employee WHERE emp id=?" ;
EXECUTE SQLSA USING :Emp_id var ;

These statements prepare an INSERT statement with two parameters in
SQLSA, then execute it using the value of the PowerScript variables
Dept_id_var and Dept_name_var. Note that Dept_name_var is NULL.

123

Using dynamic SQL

INT Dept_id_var = 156
String Dept_name_var
SetNull (Dept_name_var)
PREPARE SQLSA

FROM "INSERT INTO dept VALUES (?,?)" ;
EXECUTE SQLSA USING :Dept_id_var, :Dept_name_var ;

124

Chapter 7 SQL Statements

Format 3

Syntax

Use this format to execute a SQL statement that produces a result set in
which the input parameters and result set columns are known at compile
time.

DECLARE Cursor | Procedure
DYNAMIC CURSOR | PROCEDURE
FOR DynamicStagingArea ;

PREPARE DynamicStagingArea FROM SQL Statement
{USING TransactionObject} ;

OPEN DYNAMIC Cursor
{USING ParameterList} ;

EXECUTE DYNAMIC Procedure
{USING ParameterList} ;

FETCH Cursor | Procedure
INTO HostVariableList} ;

CLOSE Cursor| Procedure ;

Parameter Description

Cursor or Procedure The name of the cursor or procedure you want to
use.

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

SQLStatement A string containing a valid SQL SELECT statement.

The string can be a string constant or a
PowerBuilder variable preceded by a colon (such as
:mysql). The string must be contained on one line
and cannot contain expressions.

Enter a question mark (?) for each parameter in the
statement. Value substitution is positional; reserved
word substitution is not allowed.

TransactionObject The name of the transaction object that identifies
the database.

125

Using dynamic SQL

Parameter Description

ParameterList A comma-separated list of PowerScript variables.
Note that PowerScript variables are preceded by a
colon (3).

HostVariableList The list of PowerScript variables into which the data
values will be retrieved.

Description To specify a NULL value, use the SetNull function.
The DECLARE statement is not executable and can be declared globally.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR,
or FETCH LAST.

The FETCH and CLOSE statements in Format 3 are the same as in
standard embedded SQL.

To declare a global, shared, or instance cursor or procedure, select Global
Variables, Instance Variables, or Shared Variables on the Declare menu of
the PowerScript painter. To declare a local cursor, click the Paint SQL
button in the PainterBar.

&~ For information about global, instance, shared, and local scope, see
Chapter 3, "Declarations."

Examples The statements in this example associate a cursor named my_cursor with
SQLSA, prepare a SELECT statement in SQLSA, open the cursor, and
return the employee ID in the current row into the PowerScript variable
Emp_id_var.

INT Emp_id_var

DECLARE my cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
OPEN DYNAMIC my_cursor ;

FETCH my_cursor INTO :Emp_id_var ;

CLOSE my_cursor ;

You can loop through the cursor as you can in embedded static SQL.

126

Chapter 7 SQL Statements

The statements in this example associate a cursor named my_cursor with

SQLSA, prepare a SELECT statement with one parameter in SQLSA,

open the cursor, and substitute the value of the variable Emp_state_var for

the parameter in the SELECT statement. The employee ID in the active

row is returned into the PowerBuilder variable Emp_id_var.

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
INT Emp_id_var

String Emp_state var = "MA"

String Sglstatement

Sqglstatament = "SELECT emp_id FROM employee "&
+"WHERE emp state = 2"

PREPARE SQLSA FROM :Sglstatement ;

OPEN DYNAMIC my_cursor using :Emp_state var ;

FETCH my_cursor INTO :Emp_id_var ;

CLOSE my_cursor ;

The statements in this example perform the same processing as the

preceding example but use a database stored procedure called Emp_select.

// The syntax of emp select is:

// "SELECT emp id

// FROM employee WHERE emp_ state=@stateparm".
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;
INT Emp_id_var

String Emp_state_var

PREPARE SQLSA FROM "emp_select @stateparm=?" ;
Emp_state_var = "MA"

EXECUTE DYNAMIC my proc USING :Emp_state var ;
FETCH my_proc INTO :Emp_id var ;

CLOSE my_proc ;

127

Using dynamic SQL

Format 4

Syntax

128

Use this format to execute a SQL statement that produces a result set in
which the number of input parameters, or the number of result-set
columns, or both, are unknown at compile time.

DECLARE Cursor| Procedure
DYNAMIC CURSOR | PROCEDURE
FOR DynamicStagingArea ;

PREPARE DynamicStagingArea FROM SQL Statement
{USING TransactionObject} ,

DESCRIBE DynamicStagingArea
INTO DynamicDescriptionArea ;

OPEN DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea} ;

EXECUTE DYNAMIC Cursor| Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

FETCH Cursor| Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

CLOSE Cursor| Procedure ;

Parameter Description

Cursor or Procedure The name of the cursor or procedure you want to
use.

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

SQLStatement A string containing a valid SQL SELECT

statement. The string can be a string constant or
a PowerBuilder variable preceded by a colon
(such as :mysgql). The string must be contained
on one line and cannot contain expressions.

Enter a question mark (?) for each parameter in
the statement. Value substitution is positional;
reserved word substitution is not allowed.

Chapter 7 SQL Statements

Description

Accessing attribute
information

Parameter Description

TransactionObject The name of the transaction object that
identifies the database.

DynamicDescriptionArea The name of the DynamicDescriptionArea
(usually SQLDA).

The DECLARE statement is not executable and can be defined globally.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR,
or FETCH LAST.

To declare a global, shared, or instance cursor or procedure, select Global
Variables, Instance Variables, or Shared Variables on the Declare menu of
the PowerScript painter. To declare a local cursor, click the Paint SQL
button in the PainterBar.

& For information about global, instance, shared, and local scope, see
Chapter 3, "Declarations."

When a statement is described into a DynamicDescriptionArea, the
information in the following table is available to you in the NumInputs,
InParmType, NumOutputs, and OutParmType attributes of that
DynamicDescriptionArea variable.

Information Attribute
Number of input parameters NumlInputs
Array of input parameter types InParmType
Number of output parameters NumOutputs
Array of output parameter types OutParmType

The array of input parameter values and the array of output parameter
values are also available. You can use the SetDynamicParm function to set
the values of an input parameter and the following functions to obtain the
value of an output parameter:

¢ GetDynamicDate

¢ GetDynamicDateTime
¢ GetDynamicNumber
¢

GetDynamicString

129

Using dynamic SQL

Parameter values

Input parameters

Output parameters

Examples

130

¢ GetDynamicTime
& For information about these functions, see the Function Reference.

The following enumerated data types are the valid values for the input and
output parameter types:

TypeBoolean! TypeLong!

TypeDate! TypeReal!
TypeDateTime! TypeString!
TypeDecimal! TypeTime!
TypeDouble! TypeUnsignedInteger!
Typelnteger! TypeUnsignedLong!

You can set the type and value of each input parameter found in the
PREPARE statement. PowerBuilder populates the SQLDA attribute
NumlInputs when the DESCRIBE is executed. You can use this value with
the SetDynamicParm function to set the type and value of a specific input
parameter. The input parameters are optional. However, if you use them,
you should fill in all the values before executing the OPEN or EXECUTE
statement.

You can access the type and value of each output parameter found in the
PREPARE statement. If the database supports output parameter
description, PowerBuilder populates the SQLDA attribute NumOutputs
when the DESCRIBE is executed. If the database does not support output
parameter description, PowerBuilder populates the SQLDA attribute
NumOutputs when the FETCH statement is executed.

You can use the number of output parameters in the NumOutputs attribute
in functions to obtain the type of a specific parameter from the output
parameter type array in the OutParmType attribute. When you have the
type, you can call the appropriate function after the FETCH statement to
retrieve the output value.

This example assumes you know that there will be only one output
descriptor and that it will be an integer. You can expand this example to
support any number of output descriptors and any data type by wrapping
the CHOOSE CASE statement in a loop and expanding the CASE
statements.

Chapter 7 SQL Statements

string Stringvar, Sglstatement

int Intvar

Sglstatement = "SELECT emp_ id FROM employee"
PREPARE SQLSA FROM :Sglstatement ;

DESCRIBE SQLSA INTO SQLDA ;

DECLARE my_ cursor DYNAMIC CURSOR FOR SQLSA ;
OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;
FETCH my_cursor USING DESCRIPTOR SQLDA ;

// If the FETCH is successful, the output

// descriptor array will contain returned

// values from the first row of the result set.
// SQLDA.NumOutputs contains the number of

// output descriptors.

// The SQLDA.OutParmType array will contain

// NumOutput entries and each entry will contain
// an value of the enumerated data type ParmType
// (such as TypeInteger!, or TypeString!).

CHOOSE CASE SQLDA.OutParmType[1l]
CASE TypeString!
Stringvar = GetDynamicString(SQLDA, 1)
CASE Typelnteger!
Intvar = GetDynamicNumber (SQLDA, 1)
END CHOOSE
CLOSE my_cursor ;

This example assumes you know there is one string input descriptor and
sets the parameter to MA.

string Sglstatement

Sglstatement = "SELECT emp_id FROM employee "&
+"WHERE emp_state = ?"

PREPARE SQLSA FROM :Sglstatement ;

DESCRIBE SQLSA INTO SQLDA ;

// If the DESCRIBE is successful, the input

// descriptor array will contain one input

// descriptor that you must fill prior to the OPEN

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;

SetDynamicParm(SQLDA, 1, "MA")

OPEN DYNAMIC my cursor USING DESCRIPTOR SQLDA ;

FETCH my_ cursor USING DESCRIPTOR SQLDA ;

// If the FETCH is successful, the output

// descriptor array will contain returned

// values from the first row of the result set

// as in the first example.

CLOSE my_cursor ;

131

Using dynamic SQL

Considerations

When you use dynamic SQL, you must:

¢ Prepare the DynamicStagingArea in all formats except Format 1
¢ Describe the DynamicDescriptionArea in Format 4

¢ Execute the statements in the appropriate order
*

Understand how the Where Current of Cursor clause works

Preparation and description

Since the SQLSA staging area is the only connection between the
execution of a SQL statement and a transaction object, an execution error
will occur if you do not prepare the SQL statement correctly.

In addition to SQLSA and SQLDA, you can declare other variables of the
DynamicStagingArea and DynamicDescriptionArea data types. However,
this is required only when your script requires simultaneous access to two
or more dynamically prepared statements.

Examples This is a valid dynamic cursor.

DECLARE my_ cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
OPEN DYNAMIC my_cursor j;

This is an invalid dynamic cursor. There is no PREPARE, and therefore an
execution error will occur.

DECLARE my cursor DYNAMIC CURSOR FOR SQLSA ;
OPEN DYNAMIC my cursor ;

Statement order

Where you place the statements in your scripts is unimportant, but the
order of execution is important in Formats 2, 3, and 4. You must execute:

¢ The DECLARE and the PREPARE before you execute any other
dynamic SQL statements

¢ The OPEN in Formats 3 and 4 before the FETCH

¢ The CLOSE at the end

If you have multiple PREPARE statements, the order affects the contents of
SQLSA.

132

Chapter 7 SQL Statements

Example These statements illustrate the correct ordering.

DECLARE my cursor DYNAMIC CURSOR FOR SQLSA
string sqll, sql2

sqll = "SELECT emp_id FROM department "&
WHERE salary > 90000"
sqgl2 = "SELECT emp_id FROM department "&

WHERE salary > 20000"

IF deptId = 200 then
PREPARE SQLSA FROM :sqgll USING SQLCA ;
ELSE
PREPARE SQLSA FROM :sgl2 USING SQLCA ;
END IF
OPEN DYNAMIC my cursor ; // my_cursor maps to the
// SELECT that has been
// prepared.

Using Where Current Of

The Where Current Of Cursor clause works with dynamically created
cursors, but its execution is not dynamic.

Therefore, you should not try to execute statements like this.

UPDATE EMP SET EMP_STATE = 'CT'
WHERE CURRENT OF my_cursor ;

These statements are valid.

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT * FROM employee"
USING SQLCA ;
OPEN DYNAMIC my_cursor ;
FETCH my_cursor INTO :varl, :var2 ;
UPDATE employee SET emp_state = 'CT'
WHERE CURRENT OF my cursor ;

133

APPENDIX A
PowerBuilder Units

About this PowerBuilder units are used to define the x and y coordinate positions and

appendix the width and height of a window and all controls in the window.

Contents Topic Page
Benefits of PowerBuilder units 136
How PowerBuilder units are calculated 137
Additional factors 140
Conversion functions 141

135

Benefits of PowerBuilder units

Benefits of PowerBuilder units

The benefits of PowerBuilder units include:

¢ A window and all its controls are reproduced exactly (pixel for pixel)
when run at a later time on the same machine.

¢ A window designed on one machine is reproduced exactly (pixel for
pixel) on any machine with the same type of monitor (such as VGA or
EGA) and the same system font.

¢ Screens designed on one machine (for example, one with a VGA
display and a 16-pixel system font) and run on another (for example,
one with an EGA display and a 12-pixel system font) are very similar.

136

Appendix A PowerBuilder Units

How PowerBuilder units are calculated

PowerBuilder units are based on the system font (the font Windows uses
for captions, menus, or listboxes). This is the same method used by
Windows for dialog boxes, where sizes are defined in terms of 1/4 the
character width and 1/8 the character height. However, these Windows
dialog box units are not granular enough to define sizes or positions less
than two pixels on a VGA or EGA screen.

PowerBuilder units, on the other hand, provide eight times greater
resolution and can reproduce one-pixel dimensions on even high-resolution
(for example, 2048x2048) monitors. Specifically, a horizontal unit is 1/32
the width of an average character in the system font (tmAveCharWidth),
and a vertical unit is 1/64 the system font height (tmHeight).

Sizes in the Window painter and in scripts are in PowerBuilder units. In
fact, you rarely see or use pixel measurements. (The one exception is the
grid size in the Window and DataWindow painters, which is in pixels.)

Converting between PowerBuilder units and pixels

Internally, PowerBuilder uses the following formulas for converting
between PowerBuilder units and pixels. PowerBuilder calculates the
formulas using integer arithmetic, so all fractional values are dropped after
each step of the calculation.

¢ For x coordinate locations and object widths:

units = (64 * pixels / (2 * FontWidth)) + 1
pixels = 2 * units * FontWidth / 64

¢ Fory coordinate locations and object heights:

units = (128 * pixels / (2 * FontHeight)) + 1
pixels = 2 * units * FontHeight / 128

Although PowerBuilder units for x coordinate locations and widths are
1/32 the width of an average character in the system font, these formulas
use 64 and two times the system font width. This gives the same result and
makes it possible to use integer arithmetic. Integer arithmetic truncates
remainders (if any) at each step, and this truncation is an essential part of
each calculation.

137

How PowerBuilder units are calculated

Examples of conversions

138

Similarly, for y coordinate locations and heights, the formulas use 128 and
two times the system font height to calculate units that are 1/64 of the
system font height.

Suppose you have a ListBox located at x=50, y=100 (pixels) with a width
of 150 and a height of 200, and you are on a VGA screen (640x480 pixels)
where the system font height is 16 pixels and its width is seven pixels. The
following table shows how the pixel measurements would be converted
automatically to PowerBuilder units.

Coordinate/

dimension Pixels PowerBuilder units
X 50 229

y 100 401

Width 150 686

Height 200 801

The following table shows the results when these units are converted back

to pixels for display on the same machine.

Coordinate/ PowerBuilder

dimension units Pixels | How close?
X 229 50 Identical

y 401 100 Identical
Width 686 150 Identical
Height 801 200 Identical

The following table shows the results when these units are converted on an
EGA monitor with a system font height of 12 pixels.

Appendix A PowerBuilder Units

Explanation

Coordinate/ PowerBuilder

dimension Units Pixels | How close?

X 229 50 Identical

y 401 75 EGA is 21.4 % of the screen
height; VGA is 20.8 %

Width 686 150 Identical

Height 801 150 EGA is 42.9 % of the screen
height; VGA is 41.7 %

When developing on VGA and deploying on EGA, the horizontal
measurements are identical, because both have 640 pixels across and all
the standard system fonts are seven pixels average width. You get the
closest match in vertical dimensions when you have a 16-pixel system font
on the VGA and a 12-pixel system font on the EGA, as shown in the

following table.
VGA system EGA system
Match font height font height Maximum error
Best 16 12 3%
15 10 9%
15 12 10 %
Worst 16 10 14 %

139

Ad(ditional factors

Additional factors

On most systems, squares (and circles) do not have the same height and
width measured in PowerBuilder units. The easiest and most accurate way
to draw a square is to set the grid size (which is measured in pixels) in the
Window painter. On a VGA (640x480 pixels), there are the same number
of pixels per inch horizontally and vertically so that making the grid size
the same in both dimensions helps to produce accurate squares. On an
EGA (640x350), you should set the vertical grid size to 73 percent
(350/480) of the horizontal grid size. For example, use seven for the
horizontal grid and five for the vertical grid.

On a system with a large-screen monitor, a window that fills a VGA screen
often does not fill the entire large screen. This is deliberate. The window
size, text, and controls are in the correct proportions and are at least as
legible as on a VGA screen. For example, on a 1664x1200 monitor with a
24-pixel system font, a window that filled a VGA screen takes about 77
percent of the screen's width and 60 percent of the screen's height.

140

Appendix A PowerBuilder Units

Conversion functions

PowerScript provides the following functions to convert between
PowerBuilder units and pixels. o

Returned
Function data type Use to
PixelsToUnits Integer Convert pixels to PowerBuilder units
UnitsToPixels Integer Convert PowerBuilder units to pixels

141

APPENDIX B
Reserved Words

You cannot use the following reserved words as identifiers because
PowerScript uses them internally.

and enumerated library selectblob
call event loop shared
case execute next step
choose exit not subroutine
close external of super
commit false on system
connect fetch open then
continue first or this
create for parent to

cursor forward prepare true
declare from prior type
delete function private until
describe global procedure update
descriptor goto protected updateable
destroy halt prototypes using
disconnect if public variables
do immediate readonly while
dynamic insert ref with

else into return within
elseif is rollback

end last select

143

APPENDIX C

Supported C Data Types

The following table lists the PowerBuilder-supported C data types and their
PowerBuilder equivalents.

PowerBuilder

C data type equivalent Description

UNSIGNED UINT 16-bit unsigned integer

LONG LONG 32-bit signed integer

BYTE CHAR 8-bit unsigned character

CHAR CHAR 8-bit unsigned character

BOOL BOOLEAN 16-bit signed integer

WORD UINT 16-bit unsigned integer

DWORD ULONG 32-bit unsigned integer

LPSTR STRING 32-bit far pointer to a character string
LPBYTE STRING 32-bit far pointer to a character
LPINT STRING 32-bit far pointer to an integer
LPWORD STRING 32-bit far pointer to an unsigned integer
LPLONG STRING 32-bit far pointer to a long
LPDWORD STRING 32-bit far pointer to a double word
LPVOID STRING 32-bit far pointer to any data type
HANDLE UINT 16-bit handle to a Windows object (for

example, HICON or HBITMAP)

The C near-pointer data types (such as PSTR and NPSTR) are not
supported in PowerBuilder.

145

Supported C Data Types

Use the REF reserved word in external function declarations that require a
32-bit far pointer to a PowerBuilder variable. For example, to prototype a C
function called MyFunc, enter.

BOOL FAR PASCAL MyFunc(HANDLE FAR *1lpHandle);

To call MyFunc from PowerBuilder, declare it as follows.

FUNCTION boolean MyFunc(REF UINT lpHandle) &
LIBRARY "myfuncs.dll"

After you declare the function, you can call it as follows.

UINT hwWnd // A handle to a window.
IF MyFunc(hWnd) THEN // Function succeeded,
// caller filled in handle.
ELSE // Function failed.
END IF

PowerBuilder will pass the internal memory address of the variable hWnd
so the called function can fill in the value. This is known as being passed
by reference.

146

APPENDIX D

Floating-Point Limits by Platform

The following table lists the various platforms that PowerBuilder supports
and the limits for real and double values.

Platform and

data type Minimum Maximum
Macintosh

Double 2.225074E-308 1.797693E+308
Real 1.17549E-38 3.402823E+38

UNIX (Sun SPARC and HP PA-RISC)

Double 2.2250738585072014E-308 1.7976931348623157E+308
Real 1.17549435E-38 3.40282347E+38

Windows 3.1

Double 2.225073858507202E-308 1.797693134862315E+308
Real 1.175494351E-38 3.402823466E+38
Windows NT

Double 2.2250738585072014E-308 1.7976931348623158E+308
Real 1.175494351E-38 3.402823466E+38

147

IndeXx

Special characters

- see dashes

! (enumerated value) 30
& see ampersand

'or" see quotes

* (multiplication) 54

+ (addition) 54

/ (division) 54

/* (comments) 3

// (comments) 2

:: (ancestor event) 64
;(SQL) 17

< (less than) 56

<= (less than or equal) 56
<> (not equal) 56

= (assignment) 43

= (relational) 56

> (greater than) 56

>= (greater than or equal) 56
? (dynamic SQL) 123, 125, 128
" (exponentiation) 54

* (ancestor control) 64

{} seebraces

~ see tilde

A

access level

functions 90

variables 36
addition 54
ampersand (&) 15
ancestor script, calling 64
AND operator 57
application, terminating 78
arithmetic operators 54
arrays

about 46

assigning values 62

chars and strings 26

arrays (continued)
copying 62
decimal 49
default values 46
errors 50
fixed-size 46
multidimensional 48
numbering elements 47
string 49
variable-size 47
ASCII values 8
assignment in declaration 44
assignment statements 62

back quote 64
backspace, specifying 7
blob data type 20
blobs
declaring 41
selecting from database 115
updating 117
boolean data type 20
braces
blobs 41
decimals 42
built-in functions see functions

C
CALL statement 64
carriage return, specifying 7
case sensitivity

comparisons 56
char data type

about 20, 23

array 26

converting to string 25
CHOOSE CASE statement 65

149

Class browser 27
CLOSE Cursor statement 99
CLOSE Procedure statement 100
comments

nesting 3

using 2
COMMIT statement 101
concatenation, strings 58
CONNECT statement 102
continuation character 15
CONTINUE statement 67
control structures

CHOOSE CASE 65

DO..LOOP 70

FOR..NEXT 75

IF.. THEN 80
CREATE statement 68
cursors, database

closing 99

declaring 96, 103

opening 112

D

dashes, prohibiting in variable names 4
DashesInldentifiers variable 4
data types
enumerated 30
standard 20
supported C data types 145
system object 27
database stored procedures see stored
procedures
databases
canceling changes 113
commiting changes 101
connecting to 102
cursor, opening 112
deleting rows 106, 107
disconnecting from 108
fetching rows 110
inserting rows 111
selecting rows 114
updating 116
updating cursored row 118
date data type 20
datetime data type 21

150

DDL, executing through dynamic SQL 122, 123

decimal arrays 49
decimal data type 21
decimal values, specifying 8
decimals

declaring 42
declarations

arrays 46

blob 41

decimal 42

variables 34, 41
DECLARE Cursor statement 103
DECLARE Procedure statement 104
DELETE statement 106
DELETE Where Current of Cursor statement

107

DESTROY statement 69
DISCONNECT statement 108
division 54
DLLs for external functions 91
DO...LOOP statement 70
dot notation 38, 63, 90
double colon 64
double data type 21

limits 147
dynamic SQL
about 119

considerations 132

DynamicDescriptionArea 121

DynamicStagingArea 120

format 1 122

format2 123

format3 125

format4 128

formats listed 119

NULL values 123, 126

ordering statements 132

preparing DynamicStagingArea 132

statements 120
DynamicDescriptionArea

about 121

attributes 129
DynamicStagingArea

about 120

preparing 132

E

embedded SQL see SQL statements
enumerated data type 30

error handling after SQL statements 96
errors during execution 56

EXECUTE statement 109

EXIT statement 74

exponentiation operator 54

external functions see functions

F

FETCH statement 110
floating-point limits 147
formfeed, specifying 7
functions
about 83
access level for external 90
calling 84
case sensitivity 84
chars as arguments 26
creating external 91
DLLs 91
external 89
local external 90
Object browser 86
PowerScript 84
return values 85
search order 85
types of 86
user-defined 88

G

GetDynamicDate 129
GetDynamicDateTime 129
GetDynamicNumber 129
GetDynamicString 129
GetDynamicTime 130
global variables 34

GOTO statement 77

H

HALT statement 78

hexadecimal values, specifying 8
hierarchy, system 27

host variables 94

hyphens, prohibiting in variable names

identifier names, rules for 4
IF...THEN statement

about 80

multiline 81

single-line 80
indicator variables 94
inheritance

back quote 64

double colon 64
INSERT statement 111
instance variables 34
int data type 21

L

labels 6
literals 22
local variables 40
logical operators 57
long data type 21
loop
about 70
iterative 75
leaving 74
skipping current iteration 67

multidimensional arrays 48, 49
multiplication 54

N

names, rules for 4
newline, specifying 7
NOT operator 57

4

151

NULL values
about 9
in boolean expressions 57
in expressions 55
testing for 10

(0

Object browser 31, 86
object instance
creating 68
destroying 69
octal values, specifying 8
OPEN Cursor statement 112
operators
about 53
arithmetic 54
assignment shortcuts 62
concatenation 58
logical 57
precedence 59
relational 56
OR operator 57

P

Parent reserved word 11

ParentWindow reserved word 13

PowerBuilder units
about 135
converting to pixels 137

PowerScript functions see functions
PowerScript statements see statements,

PowerScript
precedence, operator 59
precision for decimals 42
private access

functions 90
variables 36
protected access
functions 90
variables 36
public access
functions 90
variables 36

152

Q

question mark in dynamic SQL
quoted strings, continuing 15
quotes

nested strings 24

rules for 25

specifying 7, 23

with tilde 24

R

real data type

about 21

limits 147
relational operators 56
reserved words

about 11

listed 143

Parent 11

ParentWindow 13

Super 13

This 12
RETURN statement 78
return values 85
ROLLBACK statement 113
rows, database

deleting 106, 107

fetching 110

inserting 111

updating 116

updating cursored row 118

S

scope 34

script, terminating 78
SELECT statement 114
SELECTBLOB statement 115
shared variables 39

123,125, 128

special ASCII characters, including in strings 7

SQL statements
about 94
CLOSE Cursor 99
CLOSE Procedure 100
COMMIT 101
CONNECT 102

SQL statements (continued)
DECLARE Cursor 103
DECLARE Procedure 104
DELETE 106
DELETE Where Current of Cursor 107
DISCONNECT 108
error handling 96
EXECUTE 109
FETCH 110
INSERT 111
OPEN Cursor 112
painting 96
ROLLBACK 113
SELECT 114
SELECTBLOB 115
UPDATE 116
UPDATE Where Current of Cursor 118
UPDATEBLOB 117

SQLCode attribute 96

SQLDBCode attribute 96

SQLErrText attribute 96

statements, PowerScript
assignment 62
CALL 64
CHOOSE CASE 65
CONTINUE 67
continuing 15
CREATE 68
DESTROY 69
DO...LOOP 70
EXIT 74
FOR..NEXT 75
GOTO 77
HALT 78
IF.THEN 80
listed 61
RETURN 78
separating 17

stored procedures
closing 100
declaring 96, 104
executing 109

string data type 21, 23

strings
char arrays 26
comparing 56
concatenating 58
converting to char 25

strings (continued)
nested 24
subtraction operator 54
surrounded by spaces 18, 55
Super reserved word 13
system object data types 27

T

tab, specifying 7
This reserved word 12
tilde

rules for 25
tilde, specifying 7, 24
time data type 21

U

unsigned int data type 21
unsigned long data type 21
UPDATE statement 116

UPDATE Where Current of Cursor statement

118
UPDATEBLOB statement 117
user object
creating 68
user-defined functions see functions

\'/

variables
access level 36
assigning values 43
blob 41
decimal 42
declaring 41
default values 45
global 34
host 94
indicator 94
initial values 43
initializing with expression 44
instance 34
local 40
referencing in SQL 94
scope 34

153

variables (continued)
search order 40
shared 39

variable-size arrays 47

w

white space 18

154

	00966739.tif
	00966740.tif
	00966741.tif
	00966742.tif
	00966743.tif
	00966744.tif
	00966745.tif
	00966746.tif
	00966747.tif
	00966748.tif
	00966749.tif
	00966750.tif
	00966751.tif
	00966752.tif
	00966753.tif
	00966754.tif
	00966755.tif
	00966756.tif
	00966757.tif
	00966758.tif
	00966759.tif
	00966760.tif
	00966761.tif
	00966762.tif
	00966763.tif
	00966764.tif
	00966765.tif
	00966766.tif
	00966767.tif
	00966768.tif
	00966769.tif
	00966770.tif
	00966771.tif
	00966772.tif
	00966773.tif
	00966774.tif
	00966775.tif
	00966776.tif
	00966777.tif
	00966778.tif
	00966779.tif
	00966780.tif
	00966781.tif
	00966782.tif
	00966783.tif
	00966784.tif
	00966785.tif
	00966786.tif
	00966787.tif
	00966788.tif
	00966789.tif
	00966790.tif
	00966791.tif
	00966792.tif
	00966793.tif
	00966794.tif
	00966795.tif
	00966796.tif
	00966797.tif
	00966798.tif
	00966799.tif
	00966800.tif
	00966801.tif
	00966802.tif
	00966803.tif
	00966804.tif
	00966805.tif
	00966806.tif
	00966807.tif
	00966808.tif
	00966809.tif
	00966810.tif
	00966811.tif
	00966812.tif
	00966813.tif
	00966814.tif
	00966815.tif
	00966816.tif
	00966817.tif
	00966818.tif
	00966819.tif
	00966820.tif
	00966821.tif
	00966822.tif
	00966823.tif
	00966824.tif
	00966825.tif
	00966826.tif
	00966827.tif
	00966828.tif
	00966829.tif
	00966830.tif
	00966831.tif
	00966832.tif
	00966833.tif
	00966834.tif
	00966835.tif
	00966836.tif
	00966837.tif
	00966838.tif
	00966839.tif
	00966840.tif
	00966841.tif
	00966842.tif
	00966843.tif
	00966844.tif
	00966845.tif
	00966846.tif
	00966847.tif
	00966848.tif
	00966849.tif
	00966850.tif
	00966851.tif
	00966852.tif
	00966853.tif
	00966854.tif
	00966855.tif
	00966856.tif
	00966857.tif
	00966858.tif
	00966859.tif
	00966860.tif
	00966861.tif
	00966862.tif
	00966863.tif
	00966864.tif
	00966865.tif
	00966866.tif
	00966867.tif
	00966868.tif
	00966869.tif
	00966870.tif
	00966871.tif
	00966872.tif
	00966873.tif
	00966874.tif
	00966875.tif
	00966876.tif
	00966877.tif
	00966878.tif
	00966879.tif
	00966880.tif
	00966881.tif
	00966882.tif
	00966883.tif
	00966884.tif
	00966885.tif
	00966886.tif
	00966887.tif
	00966888.tif
	00966889.tif
	00966890.tif
	00966891.tif
	00966892.tif
	00966893.tif
	00966894.tif
	00966895.tif
	00966896.tif
	00966897.tif
	00966898.tif
	00966899.tif
	00966900.tif

